Intermediate Tasks Enhanced End-to-End Autonomous Driving with Uncertainty Estimation

被引:0
|
作者
Huang, Xuean [1 ]
Su, Jianmei [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang, Sichuan, Peoples R China
关键词
autonomous driving; decision-making; end-to-end model;
D O I
10.1109/CSCWD61410.2024.10580533
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Autonomous driving in urban scenarios involves high-density dynamic objects and complex road conditions, requiring precise perception of both geometric and semantic information within the environment. In addition, the inevitable long-tail events also pose a challenge to safety. In this paper, we propose ITEUE, a novel end-to-end autonomous driving method which utilizes additional intermediate tasks to guide the learning process of the model. This help to capturing more traffic-related semantic and geometric information to enhance the representational capacity of the learned features and support proper decision-making. Additionally, an uncertainty-based method is employed to quantify the reliability of the model decision, contributing to the detection of latent long-tail adverse events and ensuring safety. We have conducted a series of experiments to compare ITEUE with previous works in complex urban environments on the CARLA simulator. The results demonstrate the effectiveness of ITEUE.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [31] DDPG Based End-To-End Driving Enhanced With Safe Anomaly Detection Functionality for Autonomous Vehicles
    Basile, Giacomo
    Petrillo, Alberto
    Santini, Stefania
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 248 - 253
  • [32] Think Twice before Driving: Towards Scalable Decoders for End-to-End Autonomous Driving
    Jia, Xiaosong
    Wu, Penghao
    Chen, Li
    Xie, Jiangwei
    He, Conghui
    Yan, Junchi
    Li, Hongyang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21983 - 21994
  • [33] End-to-end autonomous driving based on the convolution neural network model
    Zhao, Yuanfang
    Chen, Yunli
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 419 - 423
  • [34] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
    Prakash, Aditya
    Chitta, Kashyap
    Geiger, Andreas
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7073 - 7083
  • [35] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [36] Evaluation of End-To-End Learning for Autonomous Driving: The Good, the Bad and the Ugly
    Varisteas, Georgios
    Frank, Raphael
    Alamdari, Seyed Amin Sajadi
    Voos, Holger
    State, Radu
    2019 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2019), 2019, : 110 - 117
  • [37] An Approach for Reliable End-to-End Autonomous Driving based on the Simplex Architecture
    Kwon, Seong Kyung
    Seo, Ji Hwan
    Lee, Jin-Woo
    Kim, Kyoung-Dae
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1851 - 1856
  • [38] A Hierarchical Temporal Memory Based End-to-End Autonomous Driving System
    Le Mero, Luc
    Dianati, Mehrdad
    Lee, Graham
    Journal of Autonomous Vehicles and Systems, 2022, 2 (04):
  • [39] Real-to-Virtual Domain Unification for End-to-End Autonomous Driving
    Yang, Luona
    Liang, Xiaodan
    Wang, Tairui
    Xing, Eric
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 553 - 570
  • [40] Performance optimization of autonomous driving control under end-to-end deadlines
    Bai, Yunhao
    Li, Li
    Wang, Zejiang
    Wang, Xiaorui
    Wang, Junmin
    REAL-TIME SYSTEMS, 2022, 58 (04) : 509 - 547