Real-to-Virtual Domain Unification for End-to-End Autonomous Driving

被引:30
|
作者
Yang, Luona [1 ]
Liang, Xiaodan [1 ,2 ]
Wang, Tairui [2 ]
Xing, Eric [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Petuum Inc, Pittsburgh, PA 15222 USA
来源
关键词
Domain unification; End-to-end autonomous driving;
D O I
10.1007/978-3-030-01225-0_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious domain shift if we were to merge data collected from different sources, which greatly hinders the model generalization ability. In this work, we address the above limitations by taking advantage of virtual data collected from driving simulators, and present DU-drive, an unsupervised real-to-virtual domain unification framework for end-to-end autonomous driving. It first transforms real driving data to its less complex counterpart in the virtual domain, and then predicts vehicle control commands from the generated virtual image. Our framework has three unique advantages: (1) it maps driving data collected from a variety of source distributions into a unified domain, effectively eliminating domain shift; (2) the learned virtual representation is simpler than the input real image and closer in form to the "minimum sufficient statistic" for the prediction task, which relieves the burden of the compression phase while optimizing the information bottleneck tradeoff and leads to superior prediction performance; (3) it takes advantage of annotated virtual data which is unlimited and free to obtain. Extensive experiments on two public driving datasets and two driving simulators demonstrate the performance superiority and interpretive capability of DU-drive.
引用
收藏
页码:553 / 570
页数:18
相关论文
共 50 条
  • [1] Multimodal End-to-End Autonomous Driving
    Xiao, Yi
    Codevilla, Felipe
    Gurram, Akhil
    Urfalioglu, Onay
    Lopez, Antonio M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 537 - 547
  • [2] Adversarial Driving: Attacking End-to-End Autonomous Driving
    Wu, Han
    Yunas, Syed
    Rowlands, Sareh
    Ruan, Wenjie
    Wahlstrom, Johan
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [3] GenAD: Generative End-to-End Autonomous Driving
    Zheng, Wenzhao
    Song, Ruiqi
    Guo, Xianda
    Zhan, Chenming
    Chen, Long
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 87 - 104
  • [4] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [5] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [6] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10164 - 10183
  • [7] End-to-End Urban Autonomous Driving With Safety Constraints
    Hou, Changmeng
    Zhang, Wei
    IEEE ACCESS, 2024, 12 : 132198 - 132209
  • [8] A Review of End-to-End Autonomous Driving in Urban Environments
    Coelho, Daniel
    Oliveira, Miguel
    IEEE ACCESS, 2022, 10 : 75296 - 75311
  • [9] SEECAD: Semantic End-to-End Communication for Autonomous Driving
    Ribouh, Soheyb
    Hadid, Abdenour
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1808 - 1813
  • [10] End-to-end Spatiotemporal Attention Model for Autonomous Driving
    Zhao, Ruijie
    Zhang, Yanxin
    Huang, Zhiqing
    Yin, Chenkun
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 2649 - 2653