Improved 2D charge carrier quantification workflow for scanning spreading resistance microscopy

被引:0
|
作者
Adlmaier, T. [1 ]
Doering, S. [1 ]
Binder, B. [1 ]
Simon, D. K. [1 ]
Mikolajick, T. [2 ,4 ]
Eng, L. M. [3 ,5 ]
机构
[1] Infineon Technol Dresden GmbH, Koenigsbrucker Str 180, D-01099 Dresden, Germany
[2] Univ Technol Dresden, Chair Nanoelect, Noethnitzer Str 64, Dresden, Germany
[3] Univ Technol Dresden, Inst Appl Phys, Noethnitzer Str 61, D-01187 Dresden, Germany
[4] Namlab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany
[5] Univ Technol Dresden, Ct Qmat Dresden Wuerzburg Cluster Excellence EXC 2, D-01062 Dresden, Germany
基金
欧盟地平线“2020”;
关键词
SPM; SSRM; SRP; Dopant characterization; Quantification; Sample preparation; Epitaxy; NANOCONTACT; SILICON;
D O I
10.1016/j.microrel.2025.115646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we introduce an extended sample preparation workflow to enhance the two-dimensional (2D) charge carrier quantification via scanning spreading resistance microscopy (SSRM) for failure analysis and electrical device characterization. This is achieved by means of embedding a novel partial-staircase doping reference sample close to the area of interest prior to cross-sectioning the device. We subsequently demonstrate that this approach enhances the quantification reliability while reducing analysis time.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Bias-induced junction displacements in scanning spreading resistance microscopy and scanning capacitance microscopy
    Eyben, P
    Duhayon, N
    Clarysse, I
    Vandervorst, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (02): : 737 - 743
  • [32] Fabrication of pristine 2D heterostructures for scanning probe microscopy
    Mckenzie, James
    Sharma, Nileema
    Liu, Xiaolong
    APL MATERIALS, 2024, 12 (07):
  • [33] Scalpel Soft Retrace Scanning Spreading Resistance Microscopy for 3D-carrier profiling in sub-10nm WFIN FinFET
    Eyben, P.
    Chiarella, T.
    Kubicek, S.
    Bender, H.
    Richard, O.
    Mitard, J.
    Mocuta, A.
    Horiguchi, N.
    Thean, A. V-Y.
    2015 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2015,
  • [34] Scanning FCS and Superresolution Microscopy on 2D Lipid Membranes
    Koenig, Marcelle
    Pisfil, Mariano Gonzalez
    Dowler, Rhys
    Kraemer, Benedikt
    Rohilla, Sumeet
    Oelsner, Christian
    Koberling, Felix
    Erdman, Rainer
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 151A - 152A
  • [35] Recent progress and insights in two-dimensional carrier profiling using scanning spreading resistance microscopy.
    Eyben, P
    Alvarez, D
    Clarysse, T
    Denis, S
    Vandervorst, W
    CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY, 2003, 683 : 685 - 692
  • [36] Three-dimensional carrier profiling of InP-based devices using scanning spreading resistance microscopy
    Xu, MW
    Hantschel, T
    Vandervorst, W
    APPLIED PHYSICS LETTERS, 2002, 81 (01) : 177 - 179
  • [37] Comprehensive 2D-carrier profiling of low-doping region by high-sensitivity scanning spreading resistance microscopy (SSRM) for power device applications
    Zhang, L.
    Koike, M.
    Ono, M.
    Itai, S.
    Matsuzawa, K.
    Ono, S.
    Saito, W.
    Yamaguchi, M.
    Hayase, Y.
    Hara, K.
    MICROELECTRONICS RELIABILITY, 2015, 55 (9-10) : 1559 - 1563
  • [38] Characterization of AIIIBV epitaxial layers by scanning spreading resistance microscopy
    Szyszka, Adam
    Sciana, Beata
    Radziewicz, Damian
    Macherzynski, Wojciech
    Paszkiewicz, Bogdan
    Tlaczala, Marek
    OPTICA APPLICATA, 2011, 41 (02) : 281 - 288
  • [39] Highly conductive diamond probes for scanning spreading resistance microscopy
    Hantschel, T
    Niedermann, P
    Trenkler, T
    Vandervorst, W
    APPLIED PHYSICS LETTERS, 2000, 76 (12) : 1603 - 1605
  • [40] Scanning spreading resistance microscopy of shallow doping profiles in silicon
    Suchodolskis, A.
    Hallen, A.
    Gran, J.
    Hansen, T-E.
    Karlsson, U. O.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 253 (1-2): : 141 - 144