Structured low rank updates of tridiagonal Toeplitz matrices

被引:0
|
作者
Chorianopoulos, Christos [1 ]
机构
[1] Univ West Attica, Dept Elect & Elect Engn, TelSiP Lab, Egaleo, Greece
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 04期
关键词
Toeplitz matrices; Chebyshev polynomials; Low rank updates; Eigenvalue approximation; INVERSES; EIGENVALUES;
D O I
10.1007/s40314-025-03143-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some special low rank updates of tridiagonal Toeplitz matrices are considered that occur symmetrically on the first row and first column or the last row and the last column. Emphasis is given to the case of symmetric matrices. The fact that these matrices have known spectral data is used to provide exact formulas for eigenvalue approximation expressions when the updates are of sufficiently small magnitude. Finally, for some special forms of these updates, a complete characterization of eigenvalues and eigenvectors is given.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Nearness results for real tridiagonal 2-Toeplitz matrices
    Bebiano, Natalia
    Furtado, Susana
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (05)
  • [42] NORM EQUALITIES AND INEQUALITIES FOR TRIDIAGONAL PERTURBED TOEPLITZ OPERATOR MATRICES
    Wang, Jiajie
    Zheng, Yanpeng
    Jiang, Zhaolin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 671 - 683
  • [43] ON INVERSES AND EIGENPAIRS OF PERIODIC TRIDIAGONAL TOEPLITZ MATRICES WITH PERTURBED CORNERS
    Wei, Yunlan
    Jiang, Xiaoyu
    Jiang, Zhaolin
    Shon, Sugoog
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (01): : 178 - 191
  • [44] On the efficient and accurate determinant evaluation of periodic tridiagonal Toeplitz matrices
    Jia, Ji-Teng
    Wang, Fu-Rong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (07) : 1504 - 1521
  • [45] A parallel method for linear equations with tridiagonal Toeplitz coefficient matrices
    Garey, LE
    Shaw, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) : 1 - 11
  • [46] On the efficient and accurate determinant evaluation of periodic tridiagonal Toeplitz matrices
    Ji-Teng Jia
    Fu-Rong Wang
    Journal of Mathematical Chemistry, 2023, 61 : 1504 - 1521
  • [47] A parallel method for linear equations with tridiagonal Toeplitz coefficient matrices
    Garey, L.E.
    Shaw, R.E.
    Computers and Mathematics with Applications, 2001, 42 (1-2): : 1 - 11
  • [48] TRIDIAGONAL TOEPLITZ MATRICES AND ORTHOGONAL POLYNOMIALS ON THE UNIT-CIRCLE
    GODOY, E
    MARCELLAN, F
    ORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS /: PROCEEDINGS OF THE INTERNATIONAL CONGRESS, 1989, 117 : 139 - 146
  • [49] Explicit inverse of symmetric, tridiagonal near Toeplitz matrices with strictly diagonally dominant Toeplitz part
    Kurmanbek, Bakytzhan
    Erlangga, Yogi
    Amanbek, Yerlan
    SPECIAL MATRICES, 2025, 13 (01):
  • [50] Fast Algorithms for Displacement and Low-Rank Structured Matrices
    Chandrasekaran, Shivkumar
    Govindarajan, Nithin
    Rajagopal, Abhejit
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 17 - 22