Structured low rank updates of tridiagonal Toeplitz matrices

被引:0
|
作者
Chorianopoulos, Christos [1 ]
机构
[1] Univ West Attica, Dept Elect & Elect Engn, TelSiP Lab, Egaleo, Greece
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 04期
关键词
Toeplitz matrices; Chebyshev polynomials; Low rank updates; Eigenvalue approximation; INVERSES; EIGENVALUES;
D O I
10.1007/s40314-025-03143-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some special low rank updates of tridiagonal Toeplitz matrices are considered that occur symmetrically on the first row and first column or the last row and the last column. Emphasis is given to the case of symmetric matrices. The fact that these matrices have known spectral data is used to provide exact formulas for eigenvalue approximation expressions when the updates are of sufficiently small magnitude. Finally, for some special forms of these updates, a complete characterization of eigenvalues and eigenvectors is given.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Sublinear Time Low-Rank Approximation of Toeplitz Matrices
    Musco, Cameron
    Sheth, Kshiteej
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 5084 - 5117
  • [22] Generalized Nested Sampling for Compressing Low Rank Toeplitz Matrices
    Qiao, Heng
    Pal, Piya
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1844 - 1848
  • [23] Structured distance to normality of tridiagonal matrices
    Bebiano, Natalia
    Furtado, Susana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 552 : 239 - 255
  • [24] Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics
    Wittenburg, J
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (04): : 575 - 587
  • [25] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Wei, Yunlan
    Jiang, Xiaoyu
    Jiang, Zhaolin
    Shon, Sugoog
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [26] The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows
    Yunlan Wei
    Yanpeng Zheng
    Zhaolin Jiang
    Sugoog Shon
    Journal of Applied Mathematics and Computing, 2022, 68 : 623 - 636
  • [27] Inversion of k-tridiagonal matrices with Toeplitz structure
    Jia, Jiteng
    Sogabe, Tomohiro
    El-Mikkawy, Moawwad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (01) : 116 - 125
  • [28] The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices
    Diele, F
    Lopez, L
    APPLIED MATHEMATICS LETTERS, 1998, 11 (03) : 61 - 69
  • [29] ON DETERMINANTS AND PERMANENTS OF k-TRIDIAGONAL TOEPLITZ MATRICES
    Asci, Mustafa
    Tasci, Dursun
    El-Mikkawy, Moawwad
    UTILITAS MATHEMATICA, 2012, 89 : 97 - 106
  • [30] Some comments on tridiagonal (p, r)-Toeplitz matrices
    Andelic, Milica
    da Fonseca, Carlos M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 572 : 46 - 50