The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus x domestica Borkh.)

被引:0
|
作者
Starkus, Aurelijus [1 ]
Morkunaite-Haimi, Sarune [1 ]
Gurskas, Tautvydas [2 ]
Misiukevicius, Edvinas [1 ]
Stanys, Vidmantas [1 ]
Frercks, Birute [1 ]
机构
[1] Lithuanian Res Ctr Agr & Forestry, Inst Hort, LT-54333 Babtai, Lithuania
[2] Lithuanian Berry Growers Assoc, LT-56301 Lapainia, Lithuania
关键词
Malus x domestica; abscission; fruit drop; yield self-regulation; phytohormones; genetic mechanisms; ABSCISSION ZONE; ETHYLENE BIOSYNTHESIS; SIGNALING PATHWAYS; BIENNIAL BEARING; PREHARVEST DROP; CELL-SEPARATION; EARLY INDUCTION; CARBON BALANCE; FLORAL ORGANS; SEED NUMBER;
D O I
10.3390/horticulturae10090987
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The apple tree (Malus x domestica Borkh.) belongs to the Rosaceae. Due to its adaptability and tolerance to different soil and climatic conditions, it is cultivated worldwide for fresh consumption. The priorities of apple growers are high-quality fruits and stable yield for high production. About 90 to 95 percent of fruits should fall or be eliminated from apple trees to avoid overcropping and poor-quality fruits. Apple trees engage in a complex biological process known as yield self-regulation, which is influenced by several internal and external factors. Apple buds develop in different stages along the branches, and they can potentially give rise to new shoots, leaves, flowers, or fruit clusters. The apple genotype determines how many buds will develop into fruit-bearing structures and the capacity for yield self-regulation. Plant hormones such as ethylene, cytokinins, auxins, and gibberellins play a crucial role in regulating the fruit set, growth, and development, and the balance of these hormones influences the flowering intensity, fruit size, and fruit number on the apple tree. Apple growers often interfere in the self-regulation process by manually thinning fruit clusters. Different thinning methods, such as by hand, mechanical thinning, or applying chemical substances, are used for flower and fruit thinning. The most profitable in commercial orchards is the use of chemicals for elimination, but more environmentally sustainable solutions are required due to the European Green Deal. This review focuses on the biological factors and genetic mechanisms in apple yield self-regulation for a better understanding of the regulatory mechanism of fruitlet abscission for future breeding programs targeted at self-regulating yield apple varieties.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.)
    R. Liebhard
    L. Gianfranceschi
    B. Koller
    C.D. Ryder
    R. Tarchini
    E. Van De Weg
    C. Gessler
    Molecular Breeding, 2002, 10 : 217 - 241
  • [42] Genes responding to water deficit in apple (Malus x domestica Borkh.) roots
    Bassett, Carole Leavel
    Baldo, Angela M.
    Moore, Jacob T.
    Jenkins, Ryan M.
    Soffe, Doug S.
    Wisniewski, Michael E.
    Norelli, John L.
    Farrell, Robert E., Jr.
    BMC PLANT BIOLOGY, 2014, 14
  • [43] Advances in QTL mapping for ethylene production in apple (Malus x domestica Borkh.)
    Costa, Fabrizio
    Cappellin, Luca
    Farneti, Brian
    Tadiello, Alice
    Romano, Andrea
    Soukoulis, Christos
    Sansavini, Silviero
    Velasco, Riccardo
    Biasioli, Franco
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2014, 87 : 126 - 132
  • [44] Baltic fruit rootstock studies: evaluation of apple (Malus domestica Borkh.) new rootstocks
    Kviklys, Darius
    Kvikliene, Nomeda
    Bielicki, Pawel
    Bite, Andris
    Lepsis, Janis
    Univer, Toivo
    Univer, Neeme
    Uselis, Nobertas
    Lanauskas, Juozas
    ZEMDIRBYSTE-AGRICULTURE, 2013, 100 (04) : 441 - 446
  • [45] Bin Mapping of EST-SSRs in Apple (Malus x domestica Borkh.)
    van Dyk, M. M.
    Rees, D. J. G.
    XII EUCARPIA SYMPOSIUM ON FRUIT BREEDING AND GENETICS, 2009, 814 : 681 - 687
  • [46] Increased phloridzin content associated with russeting in apple (Malus domestica(Suckow) Borkh.) fruit
    Gutierrez, Benjamin L.
    Zhong, Gan-Yuan
    Brown, Susan K.
    GENETIC RESOURCES AND CROP EVOLUTION, 2018, 65 (08) : 2135 - 2149
  • [47] Increased phloridzin content associated with russeting in apple (Malus domestica (Suckow) Borkh.) fruit
    Benjamin L. Gutierrez
    Gan-Yuan Zhong
    Susan K. Brown
    Genetic Resources and Crop Evolution, 2018, 65 : 2135 - 2149
  • [48] Re-Visiting Calcium Concentration and Distribution in Apple Fruit (Malus Domestica Borkh.)
    Lotze, Elmi
    Wilsdorf, Robert
    Turketti, Sandy
    Przybylowiczd, Wojciech Jozef
    Mesjasz-Przybylowiczd, Jolanta
    JOURNAL OF PLANT NUTRITION, 2015, 38 (10) : 1469 - 1477
  • [49] Ultrastructure of epicuticular wax aggregates during fruit development in apple (Malus domestica Borkh.)
    Curry, EA
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2005, 80 (06): : 668 - 676
  • [50] Chemical composition of apple-tree (Malus domestica Borkh.) leaf essential oils
    Judzentiene, Asta
    Misiunas, Audrius
    CHEMIJA, 2017, 28 (03): : 172 - 176