The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus x domestica Borkh.)

被引:0
|
作者
Starkus, Aurelijus [1 ]
Morkunaite-Haimi, Sarune [1 ]
Gurskas, Tautvydas [2 ]
Misiukevicius, Edvinas [1 ]
Stanys, Vidmantas [1 ]
Frercks, Birute [1 ]
机构
[1] Lithuanian Res Ctr Agr & Forestry, Inst Hort, LT-54333 Babtai, Lithuania
[2] Lithuanian Berry Growers Assoc, LT-56301 Lapainia, Lithuania
关键词
Malus x domestica; abscission; fruit drop; yield self-regulation; phytohormones; genetic mechanisms; ABSCISSION ZONE; ETHYLENE BIOSYNTHESIS; SIGNALING PATHWAYS; BIENNIAL BEARING; PREHARVEST DROP; CELL-SEPARATION; EARLY INDUCTION; CARBON BALANCE; FLORAL ORGANS; SEED NUMBER;
D O I
10.3390/horticulturae10090987
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The apple tree (Malus x domestica Borkh.) belongs to the Rosaceae. Due to its adaptability and tolerance to different soil and climatic conditions, it is cultivated worldwide for fresh consumption. The priorities of apple growers are high-quality fruits and stable yield for high production. About 90 to 95 percent of fruits should fall or be eliminated from apple trees to avoid overcropping and poor-quality fruits. Apple trees engage in a complex biological process known as yield self-regulation, which is influenced by several internal and external factors. Apple buds develop in different stages along the branches, and they can potentially give rise to new shoots, leaves, flowers, or fruit clusters. The apple genotype determines how many buds will develop into fruit-bearing structures and the capacity for yield self-regulation. Plant hormones such as ethylene, cytokinins, auxins, and gibberellins play a crucial role in regulating the fruit set, growth, and development, and the balance of these hormones influences the flowering intensity, fruit size, and fruit number on the apple tree. Apple growers often interfere in the self-regulation process by manually thinning fruit clusters. Different thinning methods, such as by hand, mechanical thinning, or applying chemical substances, are used for flower and fruit thinning. The most profitable in commercial orchards is the use of chemicals for elimination, but more environmentally sustainable solutions are required due to the European Green Deal. This review focuses on the biological factors and genetic mechanisms in apple yield self-regulation for a better understanding of the regulatory mechanism of fruitlet abscission for future breeding programs targeted at self-regulating yield apple varieties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Review on crop load management in apple (Malus x domestica Borkh.)
    Verma, Pramod
    Sharma, Shivani
    Sharma, N. C.
    Chauhan, Neena
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2023, 98 (03): : 299 - 321
  • [22] Identification of QTLs for Flesh Mealiness in Apple (Malus x domestica Borkh.)
    Moriya, Shigeki
    Kunihisa, Miyuki
    Okada, Kazuma
    Iwanami, Hiroshi
    Iwata, Hiroyoshi
    Minamikawa, Mai
    Katayose, Yuichi
    Matsumoto, Toshimi
    Mori, Satomi
    Sasaki, Harumi
    Matsumoto, Takashi
    Nishitani, Chikako
    Terakami, Shingo
    Yamamoto, Toshiya
    Abe, Kazuyuki
    HORTICULTURE JOURNAL, 2017, 86 (02): : 159 - 170
  • [23] Exploring genetic diversity and ascertaining genetic loci associated with important fruit quality traits in apple (Malus x domestica Borkh.)
    poonam, Rajnish
    Sharma, Rajnish
    Sharma, Parul
    Sharma, Naveen C.
    Kumar, Kuldeep
    Singh, Krishna Nand
    Bhardwaj, Vinay
    Negi, Narender
    Chauhan, Neena
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (11) : 1619 - 1632
  • [24] Characterization of microsatellite loci in apple (Malus x domestica Borkh.) cultivars
    Sikorskaite, Sidona
    Gelvonauskiene, Dalia
    Stanys, Vidmantas
    Baniulis, Danas
    ZEMDIRBYSTE-AGRICULTURE, 2012, 99 (02) : 131 - 138
  • [25] Mapping quantitative physiological traits in apple (Malus x domestica Borkh.)
    Liebhard, R
    Kellerhals, M
    Pfammatter, W
    Jertmini, M
    Gessler, C
    PLANT MOLECULAR BIOLOGY, 2003, 52 (03) : 511 - 526
  • [26] Induction of Lateral Branches in Apple (Malus x domestica Borkh.) by Notching
    Verma, Pramod
    Sharma, Naveen Chand
    Sharma, Dharam Paul
    Thakur, Hrithik
    ERWERBS-OBSTBAU, 2023, 65 (6): : 2219 - 2228
  • [27] Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome
    Silfverberg-Dilworth, E.
    Matasci, C. L.
    Van de Weg, W. E.
    Van Kaauwen, M. P. W.
    Walser, M.
    Kodde, L. P.
    Soglio, V.
    Gianfranceschi, L.
    Durel, C. E.
    Costa, F.
    Yamamoto, T.
    Koller, B.
    Gessler, C.
    Patocchi, A.
    TREE GENETICS & GENOMES, 2006, 2 (04) : 202 - 224
  • [28] Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome
    E. Silfverberg-Dilworth
    C. L. Matasci
    W. E. Van de Weg
    M. P. W. Van Kaauwen
    M. Walser
    L. P. Kodde
    V. Soglio
    L. Gianfranceschi
    C. E. Durel
    F. Costa
    T. Yamamoto
    B. Koller
    C. Gessler
    A. Patocchi
    Tree Genetics & Genomes, 2006, 2 : 202 - 224
  • [29] Fruit Quality Indicators of Apple (Malus domestica Borkh.) Cultivars Bred in Ukraine
    Shevchuk L.
    Grynyk I.
    Levchuk L.
    Babenko S.
    Podpriatov H.
    Kondratenko P.
    Journal of Horticultural Research, 2021, 29 (02) : 95 - 106
  • [30] Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus x domestica Borkh.)
    Baldi, Paolo
    Wolters, Pieter Jacobus
    Komjanc, Matteo
    Viola, Roberto
    Velasco, Riccardo
    Salvi, Silvio
    MOLECULAR BREEDING, 2013, 31 (02) : 429 - 440