Property regulations of binary alkali carbonates by SiO2 nanoparticles for high-temperature thermal energy storage

被引:0
|
作者
Huang, Zizhou [1 ]
Hu, Zuoxin [1 ]
Li, Qing [1 ]
Qiu, Yu [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten carbonate salt; Nanoparticle; Thermal storage media; Local heat flux; Condensed interfacial layer; TRANSPORT-PROPERTIES; SIMULATIONS; SALTS; ENHANCEMENT;
D O I
10.1016/j.solmat.2025.113537
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Affordable molten carbonate salts exhibit potential as heat transfer fluids and thermal storage media for the nextgeneration concentrating solar plants. However, the limited thermal conductivity and specific heat capacity limit their applications at high temperatures. In this work, the carbonate salt-based nanofluids comprising a binary carbonate salt (50 mol.% Na2CO3, 50 mol.% K2CO3) and varying fractions of SiO2 nanoparticles were developed for thermal energy storage. Molecular dynamics simulations were utilized in calculating the thermal conductivity and specific heat capacity within the temperature range of 1200-1700 K, concentrating on the effects of nanoparticle fractions. Results indicate that as the volume fraction increases from 1 % to 8 % (defined at 1200 K), specific heat capacity decreases by 0.24-0.83 %, while thermal conductivity improves by 9.7-11.8 %. Subsequent analyses of microstructural evolution, thermal diffusion characteristics, and energy density distribution elucidate the influencing mechanisms of thermal properties. Specifically, interactions between anionic nanoparticle surfaces and salt ions lead to the formation of a condensed interfacial layer encircling the nanoparticle. Within this layer, ions are trapped in a potential well with enhanced order, leading to the layer's high thermal conductivity and specific heat capacity, thereby improving overall thermal properties. Additional analyses of local specific heat capacity and local heat flux confirm that the interfacial layer exhibits higher values than other regions, directly validating the proposed mechanisms. Moreover, the presence of nanoparticles enhances the proportion of energy transport-driven heat flux, particularly within the condensed interfacial layer.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A polymer nanocomposite for high-temperature energy storage with thermal stability
    Ge, Pengzu
    Li, Lili
    Jiang, Mengquan
    Wang, Gaofeng
    Wen, Fei
    Gao, Xiaoyi
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (01):
  • [42] Enhancements in thermal properties of binary alkali chloride salt by Al2O3 nanoparticles for thermal energy storage
    Huang, Zizhou
    Li, Qing
    Qiu, Yu
    ENERGY, 2024, 301
  • [43] CO2 Regeneration of Used Alkali Carbonates for High-Temperature Desulfurization in Gasification
    Raharjo, Slamet
    Nedjalkov, Ivan
    Ueki, Yasuaki
    Yoshiie, Ryo
    Naruse, Ichiro
    ENERGY & FUELS, 2016, 30 (10) : 8556 - 8560
  • [44] Simultaneous enhancement in thermal conductivity and heat storage capability of hexadecylamine/SiO2 for thermal energy storage
    Zhang, Rongrong
    Shen, Qian
    Wang, Jingjing
    Li, Ningning
    Tan, Xingxing
    Cao, Xinghang
    Liu, Ruowang
    Zhai, Lanlan
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [45] Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications
    Shin, Donghyun
    Banerjee, Debjyoti
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 84 : 898 - 902
  • [46] Effect of SiO2 on the thermal stability of carbonate/MgO composite for thermal energy storage
    Guo, Y. R.
    Liu, Y.
    Zhang, G. Q.
    Deng, Z. F.
    Xu, G. Z.
    Li, B. R.
    2ND INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND MECHANICAL ENGINEERING (IWMSME2018), 2019, 504
  • [47] Thermal stability of sodium nitrate microcapsules for high-temperature thermal energy storage
    Li, Junfeng
    Lu, Wu
    Luo, Zhengping
    Zeng, Yibing
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 171 : 106 - 117
  • [48] Innovation trends on high-temperature thermal energy storage to defossilize energy systems
    Pantaleo, Antonio Marco
    Trevisan, Silvia
    Matteucci, Francesco
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [49] Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage
    Han, Dongmei
    Lougou, Bachirou Guene
    Xu, Yantao
    Shuai, Yong
    Huang, Xing
    APPLIED ENERGY, 2020, 264 (264)
  • [50] High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation
    Peng, Ying
    Xie, Yongshuai
    Wang, Lin
    Liu, Lixin
    Zhu, Silun
    Ma, Dehua
    Zhu, Luyi
    Zhang, Guanghui
    Wang, Xinqiang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (02) : 1471 - 1480