Property regulations of binary alkali carbonates by SiO2 nanoparticles for high-temperature thermal energy storage

被引:0
|
作者
Huang, Zizhou [1 ]
Hu, Zuoxin [1 ]
Li, Qing [1 ]
Qiu, Yu [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten carbonate salt; Nanoparticle; Thermal storage media; Local heat flux; Condensed interfacial layer; TRANSPORT-PROPERTIES; SIMULATIONS; SALTS; ENHANCEMENT;
D O I
10.1016/j.solmat.2025.113537
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Affordable molten carbonate salts exhibit potential as heat transfer fluids and thermal storage media for the nextgeneration concentrating solar plants. However, the limited thermal conductivity and specific heat capacity limit their applications at high temperatures. In this work, the carbonate salt-based nanofluids comprising a binary carbonate salt (50 mol.% Na2CO3, 50 mol.% K2CO3) and varying fractions of SiO2 nanoparticles were developed for thermal energy storage. Molecular dynamics simulations were utilized in calculating the thermal conductivity and specific heat capacity within the temperature range of 1200-1700 K, concentrating on the effects of nanoparticle fractions. Results indicate that as the volume fraction increases from 1 % to 8 % (defined at 1200 K), specific heat capacity decreases by 0.24-0.83 %, while thermal conductivity improves by 9.7-11.8 %. Subsequent analyses of microstructural evolution, thermal diffusion characteristics, and energy density distribution elucidate the influencing mechanisms of thermal properties. Specifically, interactions between anionic nanoparticle surfaces and salt ions lead to the formation of a condensed interfacial layer encircling the nanoparticle. Within this layer, ions are trapped in a potential well with enhanced order, leading to the layer's high thermal conductivity and specific heat capacity, thereby improving overall thermal properties. Additional analyses of local specific heat capacity and local heat flux confirm that the interfacial layer exhibits higher values than other regions, directly validating the proposed mechanisms. Moreover, the presence of nanoparticles enhances the proportion of energy transport-driven heat flux, particularly within the condensed interfacial layer.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] PROPERTIES OF SYNTHETIC SIO2 UNDER HIGH-TEMPERATURE TREATMENT
    KHOTIMCHENKO, VS
    VASILOI, YV
    KONSKAYA, LV
    GLASS AND CERAMICS, 1983, 40 (5-6) : 292 - 294
  • [32] Eenhancing thermal properties of mono and binary nitrates by adding SiO2 nanoparticles
    Xiong Y.
    Wang Z.
    Xu P.
    Wu Y.
    Ding Y.
    Ma C.
    Huagong Xuebao/CIESC Journal, 2018, 69 (10): : 4418 - 4426
  • [33] SIO2 (AEROSIL) AS AN ADDITIVE TO REDUCE HIGH-TEMPERATURE CORROSION
    TIPLER, W
    HANSEN, W
    JOURNAL OF THE INSTITUTE OF FUEL, 1967, 40 (322): : 536 - &
  • [34] High-temperature ac conductivity of amorphous SiO2:: Fused silica and thin thermal films
    Del Frate, D
    Quilici, S
    Spinolo, G
    Vedda, A
    PHYSICAL REVIEW B, 1999, 59 (15): : 9741 - 9744
  • [35] GROUP MEAN EMISSIVITIES AND OPACITIES OF HIGH-TEMPERATURE SIO2
    ARGO, MF
    HUEBNER, WF
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1976, 16 (12): : 1091 - 1099
  • [36] Lotus Root-Like SiO2 Nanofibers for High-Temperature Flexible Thermal Insulation
    Li, Qingyang
    Zhang, Wenlu
    Chen, Yunna
    Li, Wenbin
    He, Chong
    ACS APPLIED NANO MATERIALS, 2024, 7 (16) : 19407 - 19415
  • [37] Extended investigation of LiOH-LiBr binary system for high-temperature thermal energy storage applications
    Mahroug, Imane
    Doppiu, Stefania
    Dauvergne, Jean-Luc
    Toutain, Jean
    del Barrio, Elena Palomo
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (22) : 12455 - 12465
  • [38] Investigations on the packed bed for high-temperature thermal energy storage
    Nsofor, EC
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2005, 2 (04) : 337 - 351
  • [39] High-temperature phase change materials for thermal energy storage
    Kenisarin, Murat M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03): : 955 - 970
  • [40] High-temperature Pumping of Silicon for Thermal Energy Grid Storage
    Amy, Caleb
    Pishahang, Mehdi
    Kelsall, Colin C.
    LaPotin, Alina
    Henry, Asegun
    ENERGY, 2021, 233