A construction of non-isomorphic polyhedral cones using Lyapunov rank

被引:0
|
作者
Shanmugapriya, A. [1 ]
Chandrashekaran, A. [1 ]
机构
[1] Cent Univ Tamil Nadu, Dept Math, Thiruvarur 610005, India
关键词
Non-isomorphic polyhedral cones; proper cones; Lyapunov-like transformation; bilinearity rank; positive linear independence;
D O I
10.1080/03081087.2025.2480558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given >= 3 and 1 <=<-1, Gowda et al. in [On the bilinearity rank of a proper cone and Lyapunov-like transformations. Math Program. 2014;147(1-2, Ser. A):155-170], constructed a cone subset of R with at most n + 1 extreme vectors such that the Lyapunov rank of K, denoted by () is m. In this paper, for >= 3, when natural numbers (>), and m such that 1 <=<-1 are given, we construct a proper polyhedral cone with l extreme vectors and ()=. This construction results in non-isomorphic proper polyhedral cones with same number of extreme vectors (generators). Further, Lyapunov-like transformations on this cone are diagonal matrices of a specific type. We also prove that there is exactly one proper polyhedral cone (up to isomorphism) with four extreme vectors in R-3.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Construction of non-isomorphic families of Halin graphs with same split domination numbers
    Priyadharshini, M.
    Anandhababu, D.
    Anuradha, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 2020 (112): : 153 - 159
  • [32] ENUMERATION OF NON-ISOMORPHIC SEMIGRAPHS IN Γ4
    Kayathri, K.
    Selvam, S. Pethanachi
    ARS COMBINATORIA, 2015, 123 : 247 - 260
  • [33] On the distance between non-isomorphic groups
    Ivanyos, Gabor
    Le Gall, Francois
    Yoshida, Yuichi
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (04) : 474 - 476
  • [34] Construction of non-isomorphic families of halin graphs with same split domination numbers
    Priyadharshim, M.
    Anandhababu, D.
    Anuradha, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 112 : 153 - 159
  • [35] NON-ISOMORPHIC CURVES WITH ISOMORPHIC RINGS OF DIFFERENTIAL-OPERATORS
    LETZTER, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 : 17 - 31
  • [36] On construction, classification and evaluation of certain two level non-isomorphic orthogonal arrays
    Angelopoulos, P.
    Koukouvinos, C.
    Lappas, E.
    International Journal of Applied Mathematics and Statistics, 2009, 15 (D09): : 63 - 72
  • [37] NON-ISOMORPHIC GROUPS WITH ISOMORPHIC SPECTRAL TABLES AND BURNSIDE MATRICES
    KIMMERLE, W
    ROGGENKAMP, KW
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1994, 15 (03) : 273 - 282
  • [38] Non-isomorphic endomorphisms of Fano threefolds
    Meng, Sheng
    Zhang, De-Qi
    Zhong, Guolei
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1567 - 1596
  • [39] On construction, classification and evaluation of certain two level non-isomorphic orthogonal arrays
    Angelopoulos, P.
    Koukouvinos, C.
    Lappas, E.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 15 (D09): : 63 - 72
  • [40] Lyapunov rank of polyhedral positive operators
    Orlitzky, Michael
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05): : 992 - 1000