Construction of non-isomorphic families of Halin graphs with same split domination numbers

被引:0
|
作者
Priyadharshini, M. [1 ]
Anandhababu, D. [1 ]
Anuradha, A. [1 ]
机构
[1] Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
关键词
Combinatorial mathematics;
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
Split domination number of a graph is the cardinality of a minimum dominating set whose removal disconnects the graph. In this paper, we define a special family of Halin graphs and determine the split domination number of those graphs. We show that the construction yield non-isomorphic families of Halin graphs but with same split domination numbers. © 2020 Charles Babbage Research Centre. All rights reserved.
引用
收藏
页码:153 / 159
相关论文
共 45 条
  • [1] Construction of non-isomorphic families of halin graphs with same split domination numbers
    Priyadharshim, M.
    Anandhababu, D.
    Anuradha, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 112 : 153 - 159
  • [2] The Computation of Non-isomorphic Graphs in the Tripartite Graphs of the Same Category
    孙吉荣
    廉晓龙
    丁巍巍
    李健
    金灵
    张军
    延边大学学报(自然科学版), 2009, (02) : 109 - 111
  • [3] Exponential families of non-isomorphic triangulations of complete graphs
    Bonnington, CP
    Grannell, MJ
    Griggs, TS
    Sirán, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (02) : 169 - 184
  • [4] SOME NON-ISOMORPHIC GRAPHS
    SASTRY, DVS
    RAJU, BSP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (02): : 191 - 192
  • [5] A pair of families of non-isomorphic group association schemes with the same parameters
    Terada, S
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (08) : 1073 - 1091
  • [6] The Computation of Non-isomorphic Graphs with Direction in the Bipartite Graphs
    刘悦
    廉晓龙
    张军
    延边大学学报(自然科学版), 2010, (03) : 224 - 227
  • [7] Construction of non-isomorphic covering arrays
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [8] NUMBER OF NON-ISOMORPHIC M-GRAPHS
    OBERSCHELP, W
    MONATSHEFTE FUR MATHEMATIK, 1968, 72 (03): : 220 - +
  • [9] Non-isomorphic graphs with cospectral symmetric powers
    Barghi, Amir Rahnamai
    Ponomarenko, Ilya
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [10] Efficient Enumeration of Non-isomorphic Ptolemaic Graphs
    Tran, Dat Hoang
    Uehara, Ryuhei
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 296 - 307