A structurally damped σ-evolution equation with nonlinear memory

被引:0
|
作者
D'Abbicco, Marcello [1 ]
Girardi, Giovanni [1 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
关键词
critical exponent; global in time existence; semilinear evolution equations; structural damping; test function method; CRITICAL EXPONENT; WAVE-EQUATIONS; GLOBAL EXISTENCE; SPACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global (in time) existence of small data solutions to the Cauchy problem for the following structurally damped sigma-evolution model with nonlinear memory term: u(tt)+(-Delta)(sigma)u+mu(-Delta)(sigma/2)u(t) = integral(t)(0) (t-tau)(-gamma)|u(t)(tau, center dot)|(p) d tau, with sigma>0. In particular, for gamma is an element of((n-sigma)/n,1), we find the sharp critical exponent, under the assumption of small data in L-1. Dropping the L-1 smallness assumption of initial data, we show how the critical exponent is consequently modified for the problem. In particular, we obtain a new interplay between the fractional order of integration 1-gamma in the nonlinear memory term and the assumption that initial data are small in L-m, for some m>1.
引用
收藏
页码:10872 / 10890
页数:19
相关论文
共 50 条