A structurally damped σ-evolution equation with nonlinear memory

被引:0
|
作者
D'Abbicco, Marcello [1 ]
Girardi, Giovanni [1 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
关键词
critical exponent; global in time existence; semilinear evolution equations; structural damping; test function method; CRITICAL EXPONENT; WAVE-EQUATIONS; GLOBAL EXISTENCE; SPACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global (in time) existence of small data solutions to the Cauchy problem for the following structurally damped sigma-evolution model with nonlinear memory term: u(tt)+(-Delta)(sigma)u+mu(-Delta)(sigma/2)u(t) = integral(t)(0) (t-tau)(-gamma)|u(t)(tau, center dot)|(p) d tau, with sigma>0. In particular, for gamma is an element of((n-sigma)/n,1), we find the sharp critical exponent, under the assumption of small data in L-1. Dropping the L-1 smallness assumption of initial data, we show how the critical exponent is consequently modified for the problem. In particular, we obtain a new interplay between the fractional order of integration 1-gamma in the nonlinear memory term and the assumption that initial data are small in L-m, for some m>1.
引用
收藏
页码:10872 / 10890
页数:19
相关论文
共 50 条
  • [21] ASYMPTOTIC BEHAVIOR OF THE NONLINEAR DAMPED SCHRODINGER EQUATION
    Inui, Takahisa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (02) : 763 - 773
  • [22] Damped Nonlinear Schrodinger Equation with Stark Effect
    Hu, Yi
    Lee, Yongki
    Zheng, Shijun
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, NMMP 2022, 2024, 459 : 189 - 205
  • [23] Stability Analysis of a Damped Nonlinear Wave Equation
    El-Dib, Yusry O.
    Moatimid, Galal M.
    Elgazery, Nasser S.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1394 - 1403
  • [24] OSCILLATION THEOREMS FOR A DAMPED NONLINEAR DIFFERENTIAL EQUATION
    NAITO, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (02): : 104 - 108
  • [25] Energy decay for a damped nonlinear hyperbolic equation
    Aassila, M
    Guesmia, A
    APPLIED MATHEMATICS LETTERS, 1999, 12 (03) : 49 - 52
  • [26] Existence of an attractor and determining modes for structurally damped nonlinear wave equations
    Bilgin, B. A.
    Kalantarov, V. K.
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 15 - 22
  • [27] Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation
    Han, Jiangbo
    Xu, Runzhang
    Yang, Yanbing
    ASYMPTOTIC ANALYSIS, 2021, 122 (3-4) : 349 - 369
  • [28] STRUCTURALLY STABLE SINGULARITIES FOR A NONLINEAR WAVE EQUATION
    Bressan, Alberto
    Huang, Tao
    Yu, Fang
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (04): : 449 - 478
  • [29] Global existence for semi-linear structurally damped σ-evolution models
    Duong Trieu Pham
    Mezadek, Mohamed Kainane
    Reissig, Michael
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 569 - 596
  • [30] Strong attractors and their stability for the structurally damped Kirchhoff wave equation with supercritical nonlinearity
    Ding, Pengyan
    Yang, Zhijian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 12618 - 12644