Temperature-Driven Topological Transformations in Prestressed Cellular Metamaterials

被引:0
|
作者
Yang, Hang [1 ]
Wang, Wei-Jie [1 ]
Zhu, Jun-Zhe [1 ,2 ]
Ma, Li [3 ]
Pasini, Damiano [4 ]
Zhai, Wei [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[3] Harbin Inst Technol, Ctr Composite Mat, Harbin 150080, Peoples R China
[4] McGill Univ, Mech Engn Dept, Montreal, PQ H3A OC3, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
giant thermal deformation; prestressed assembly; stiffness reversal; stimuli-responsive metamaterials; topological transformation; NEGATIVE THERMAL-EXPANSION; POISSONS RATIO; SHAPE; DESIGN;
D O I
10.1002/adfm.202413962
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stimuli-responsive materials are able to alter their physicochemical properties, e.g., shape, color, or stiffness, upon exposure to an external trigger, e.g., heat, light, or humidity, exhibiting environmental adaptability. Their capacity to undergo shape reconfiguration, pattern transformation, and property modulation enables multifunctionality. In this work, two strategies are harnessed, i.e., prestressed assembly and temperature-dependent stiffness reversal, to introduce a class of temperature-responsive metamaterials capable of undergoing topological transformations, endowing them with smart functionality. Through a combination of mechanics theory, numerical simulations, and thermomechanical experiments, the physical mechanisms underlying the temperature-triggered topological transformations leading to pattern switches are first elucidated, and then the insights are leveraged to demonstrate tunable bandgaps and robotic capturers. These findings reveal the attainment of giant negative and positive values of coefficient of thermal expansion, accompanied by isotropic expansion and shrinkage under thermal actuation within a fairly rapid timeframe, below 6 s. The strategy here presented is versatile as it relies on a pair of off-the-shelf 3D printable materials, can be up- and down-scaled, and can also be realized through other physical stimuli, e.g., light and moisture, paving the way for use in multifunctional applications, including stimulus-triggered morphing devices, autonomous sensors and actuators, and reconfigurable soft robots.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Temperature-driven directional coalescence of silver nanoparticles
    Yan, Shi
    Sun, Dongbai
    Gong, Yu
    Tan, Yuanyuan
    Xing, Xueqing
    Mo, Guang
    Chen, Zhongjun
    Cai, Quan
    Li, Zhihong
    Yu, Hongying
    Wu, Zhonghua
    JOURNAL OF SYNCHROTRON RADIATION, 2016, 23 : 718 - 728
  • [22] Temperature-driven groundwater convection in cold climates
    Engstrom, Maria
    Nordell, Bo
    HYDROGEOLOGY JOURNAL, 2016, 24 (05) : 1245 - 1253
  • [23] Temperature-driven coordination of circadian transcriptional regulation
    Xu, Bingxian
    Hwangbo, Dae-Sung
    Saurabh, Sumit
    Rosensweig, Clark
    Allada, Ravi
    Kath, William L.
    Braun, Rosemary
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [24] Temperature-driven flows in nanochannels: Theory and simulations
    Anzini, Pietro
    Filiberti, Zeno
    Parola, Alberto
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (09):
  • [25] Temperature-driven changes in the Fermi surface of graphite
    Thoutam, Laxman R.
    Pate, Samuel E.
    Wang, Tingting
    Wang, Yong-Lei
    Divan, Ralu
    Martin, Ivar
    Luican-Mayer, Adina
    Welp, Ulrich
    Kwok, Wai-Kwong
    Xiao, Zhi-Li
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [26] Temperature-Driven Assessment of a Cantilever Truss Bridge
    Murphy, B. R.
    Yarnold, M. T.
    STRUCTURES CONGRESS 2017: BUSINESS, PROFESSIONAL PRACTICE, EDUCATION, RESEARCH, AND DISASTER MANAGEMENT, 2017, : 461 - 473
  • [27] Temperature-driven campylobacter seasonality in England and Wales
    Louis, VR
    Gillespie, IA
    O'Brien, SJ
    Russek-Cohen, E
    Pearson, AD
    Colwell, RR
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (01) : 85 - 92
  • [28] Temperature-driven massless fermions in HgCdTe heterostructures
    Teppe, F.
    Ruffenach, S.
    Krishtopenko, S. S.
    Marcinkiewicz, M.
    Consejo, C.
    Torres, J.
    Orlita, M.
    Knap, W.
    Smirnov, D.
    Morozov, S. V.
    Gavrilenko, V. I.
    Mikhailov, N. N.
    Dvoretskii, S. A.
    TERAHERTZ EMITTERS, RECEIVERS, AND APPLICATIONS VIII, 2017, 10383
  • [29] Temperature-Driven Self-Doping in Magnetite
    Elnaggar, Hebatalla
    Graas, Silvester
    Lafuerza, Sara
    Detlefs, Blanka
    Tabis, Wojciech
    Gala, Mateusz A.
    Ismail, Ahmed
    van der Eerden, Ad
    Sikora, Marcin
    Honig, Jurgen M.
    Glatzel, P.
    de Groot, Frank
    PHYSICAL REVIEW LETTERS, 2021, 127 (18)
  • [30] Temperature-Driven Crystal-to-Crystal Transformations and Luminescence Properties of Coordination Polymers Built with Diphenyldibenzofulvene Based Ligand
    Li, Qiyang
    Wu, Xiuju
    Huang, Xiaoli
    Xiao, Xue
    Jia, Shuping
    Lin, Zhihua
    Zhao, Yonggang
    CRYSTAL GROWTH & DESIGN, 2018, 18 (02) : 912 - 920