Bismuth-induced oxygen vacancies on CuO/Cu2O nanospheres for selective and active electrchemical CO2 reduction to C2H4

被引:0
|
作者
Lan, Hao [1 ,2 ]
Shen, Binhao [1 ]
Gao, Shuying [1 ]
Jia, Tianbo [1 ]
Wang, Han [1 ]
Song, Li [3 ]
Nikolaevna, Khegay Lyubov [4 ]
Morkhova, Yelizaveta A. [5 ]
Ismailovich, Rashidov Amir [4 ]
Shi, Diwei [1 ]
Tao, Hengcong [1 ]
机构
[1] Zhejiang Ocean Univ, Sch Petrochem Engn & Environm, Zhoushan 316022, Zhejiang, Peoples R China
[2] Zhejiang Pharmaceut Univ, Sch Food & Sci, Ningbo 315000, Zhejiang, Peoples R China
[3] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Peoples R China
[4] Republican Specialized Sci & Pract Med Ctr Mental, Kibray Dist 102147, Tashkent Region, Uzbekistan
[5] Samara State Tech Univ, Molodogvardeyskaya St 244, Samara 403033, Russia
基金
中国国家自然科学基金;
关键词
Electrochemical CO 2 reduction; Oxygen vacancy; CuO/Cu 2 O heterostructure; Ethylene; ELECTROREDUCTION; COPPER; CATALYSTS;
D O I
10.1016/j.surfin.2025.106074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of oxygen vacancies and heterostructures has been demonstrated to be a viable approach to improve the performance of Cu-based electrocatalysts in the CO2 reduction reaction (CO2RR). However, integrating these two benefits into a metal oxide-based electrocatalyst to realize synergistic effects presents a significant technological challenge. In this investigation, a novel self-sacrificing template in conjunction with a Bi doping strategy was adopted to optimize the electronic configuration of the Cu-based electrocatalyst. The experimental findings indicated that the optimal catalyst Bi-CuxO-3 possess rich oxygen vacancy and CuO/Cu2O heterostructure have been obtained. Benefit from these structure characters, the adsorptive and activate ability of CO2 on the catalyst surface have been enhanced. Additionally, the DFT calculations provide further confirmation of the promotive beneficial of oxygen vacancies and framework Bi. As anticipated, in the electrocatalytic CO2RR test, Bi-CuxO-3 present the highest faraday efficiency with 50.95 % for ethylene generation and greatly stability with 60 h. This work provides some new insights into modified Cu-based electrocatalyst to improve its CO2RR activity.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Oxygen Vacancy Tuning toward Efficient Electrocatalytic CO2 Reduction to C2H4
    Gu, Zhengxiang
    Yang, Na
    Han, Peng
    Kuang, Min
    Mei, Bingbao
    Jiang, Zheng
    Zhong, Jun
    Li, Li
    Zheng, Gengfeng
    SMALL METHODS, 2019, 3 (02)
  • [32] Toward highly active electrochemical CO2 reduction to C2H4 by copper hydroxyphosphate
    Wang, Zhaojie
    Shang, Yizhu
    Chen, Hongyu
    Cao, Shoufu
    Zhu, Qiuying
    Liu, Siyuan
    Wei, Shuxian
    Lu, Xiaoqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (05) : 1279 - 1287
  • [33] Toward highly active electrochemical CO2 reduction to C2H4 by copper hydroxyphosphate
    Zhaojie Wang
    Yizhu Shang
    Hongyu Chen
    Shoufu Cao
    Qiuying Zhu
    Siyuan Liu
    Shuxian Wei
    Xiaoqing Lu
    Journal of Solid State Electrochemistry, 2023, 27 : 1279 - 1287
  • [34] Ag-decorated Cu2O porous hollow catalyst for promoting CO2 electroreduction to C2H4 via enrichment of CO
    Li, Jianhao
    Hu, Zhicheng
    Han, Shuhuan
    Cao, Dapeng
    Zeng, Xiaofei
    Chen, Jianfeng
    APPLIED CATALYSIS A-GENERAL, 2025, 694
  • [35] INTERACTION OF O-2, CO2, CO, C2H4 AND C2H4O WITH AG(110)
    BACKX, C
    DEGROOT, CPM
    BILOEN, P
    SACHTLER, WMH
    SURFACE SCIENCE, 1983, 128 (01) : 81 - 103
  • [36] Establishing Active Cu+-O-Mg2+ Sites at the Cu2O/CuO Interface for Efficient Electroreduction of CO2 to C2+ Products
    Ji, Qinyuan
    Zang, Hu
    Liu, Changjiang
    Lu, Haiyan
    Yu, Nan
    Geng, Baoyou
    ACS MATERIALS LETTERS, 2024, 7 (01): : 333 - 342
  • [37] Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2
    Tan, Xinyi
    Yu, Chang
    Zhao, Changtai
    Huang, Huawei
    Yao, Xiuchao
    Han, Xiaotong
    Guo, Wei
    Cui, Song
    Huang, Hongling
    Qiu, Jieshan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9904 - 9910
  • [38] Facilitating electroreduction CO2-to-C2H4 over doped CuO nanospheres assisted by nitrogen species and oxygen vacancies
    Xu, Weicong
    Li, Peijun
    Wang, Nan
    Ding, Xiaowen
    Chen, Yujia
    Xue, Beichen
    Li, Tao
    Liu, Chao
    Xiao, Rui
    FUEL PROCESSING TECHNOLOGY, 2023, 250
  • [39] Steering Electrochemical CO2 Reduction Selectivity toward CH4 or C2H4 on N-Doped Carbon-Coated Cu/Cu2O Composite Catalysts
    Li, Feifei
    Tariq, Hossain
    Yang, Huaqian
    Cao, Yuyang
    Zhou, Tang
    Wang, Gongwei
    ACS CATALYSIS, 2024, 14 (20): : 15088 - 15095
  • [40] CuO reduction induced formation of CuO/Cu2O hybrid oxides
    Yuan, Lu
    Yin, Qiyue
    Wang, Yiqian
    Zhou, Guangwen
    CHEMICAL PHYSICS LETTERS, 2013, 590 : 92 - 96