Steering Electrochemical CO2 Reduction Selectivity toward CH4 or C2H4 on N-Doped Carbon-Coated Cu/Cu2O Composite Catalysts

被引:2
|
作者
Li, Feifei [1 ]
Tariq, Hossain [1 ]
Yang, Huaqian [1 ]
Cao, Yuyang [1 ]
Zhou, Tang [1 ]
Wang, Gongwei [2 ]
机构
[1] Wuhan Inst Technol, Sch Mat Sci & Engn, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Hubei, Peoples R China
来源
ACS CATALYSIS | 2024年 / 14卷 / 20期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CO2; reduction; methane; ethylene; copper; cuprous oxide; carbon coating; CU; CONVERSION; ELECTROREDUCTION; PRODUCTS; OPERANDO; DIOXIDE; SURFACE;
D O I
10.1021/acscatal.4c04589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the catalytic mechanism is crucial for the rational design of efficient catalysts. However, the dynamic reconstruction of copper (Cu) catalysts under harsh electrochemical CO2 reduction reaction (CO2RR) conditions poses great challenges for studying the mechanism. Herein, we prepared a series of N-doped carbon-coated Cu/Cu2O composite catalysts with varying Cu/Cu2O ratios and N-doping levels by annealing copper acetylacetonate (Cu(acac)(2)) with different amounts of potassium nitrate (KNO3), which can steer CO2RR toward either CH4 or C2+ (mainly C2H4) production. The in situ formed carbon layer effectively stabilized the Cu catalyst structures under cathode potentials, facilitating mechanistic studies of CO2RR. Through CO temperature-programmed desorption (TPD) and in situ infrared spectroscopy characterizations, it is revealed that the coexistence of Cu-0 and Cu+ sites promoted the generation of a high-coverage, strongly adsorbed *CO intermediate on the catalytic surface, thereby enhancing C-C coupling to generate C2+ products. Conversely, the surface with only Cu-0 sites exhibited a low-coverage and weakly adsorbed *CO, benefiting its hydrogenation/deoxygenation toward CH4 production.
引用
收藏
页码:15088 / 15095
页数:8
相关论文
共 50 条
  • [1] Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4
    Ning, Hui
    Wang, Xiaoshan
    Wang, Wenhang
    Mao, Qinhu
    Yang, Zhongxue
    Zhao, Qingshan
    Song, Yan
    Wu, Mingbo
    CARBON, 2019, 146 : 218 - 223
  • [2] Steering CO2 electroreduction selectivity towards CH4 and C2H4 on a tannic acid-modified Cu electrode
    Xu, Keqiang
    Li, Jinhan
    Liu, Fangming
    Xu, Wence
    Zhao, Tete
    Cheng, Fangyi
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (07) : 1395 - 1402
  • [3] THE ELECTROCHEMICAL REDUCTION OF CO2 TO CH4 AND C2H4 AT Cu/NAFION ELECTRODES (SOLID POLYMER ELECTROLYTE STRUCTURES)
    Dewulf, David W.
    Bard, Allen J.
    CATALYSIS LETTERS, 1988, 1 (1-3) : 73 - 79
  • [4] Surface Engineering on Commercial Cu Foil for Steering C2H4/CH4 Ratio in CO2 Electroreduction
    Ling, Peiquan
    Liu, Yinghuan
    Wang, Zhiqiang
    Li, Li
    Hu, Jun
    Zhu, Junfa
    Yan, Wensheng
    Jiang, Huijun
    Hou, Zhonghuai
    Sun, Yongfu
    Xie, Yi
    NANO LETTERS, 2022, 22 (07) : 2988 - 2994
  • [5] Spherical and porous Cu2O nanocages with Cu2O/Cu(OH)2 Surface: Synthesis and their promising selectivity for catalysing CO2 electroreduction to C2H4
    Cheng, Tain-Kei
    Jeromiyas, Nithiya
    Lin, Yi-Kai
    Yang, Cheng-Chun
    Kao, Chai-Lin
    Chen, Po-Yu
    Lee, Chien-Liang
    APPLIED SURFACE SCIENCE, 2024, 660
  • [6] Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4
    Lyengar, Pranit
    Huang, Jianfeng
    De Gregorio, Gian Luca
    Gadiyar, Chethana
    Buonsanti, Raffaella
    CHEMICAL COMMUNICATIONS, 2019, 55 (60) : 8796 - 8799
  • [7] Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4
    Sun, Guodong
    Cao, Yanan
    Li, Deqing
    Hu, Mingzhen
    Liang, Xinhu
    Wang, Zhe
    Cai, Zengjian
    Shen, Fengyi
    Chen, Bozhen
    Zhou, Kebin
    APPLIED CATALYSIS A-GENERAL, 2023, 651
  • [8] Effective synthesis route of renewable activated biocarbons adsorbent for high CO2, CH4, H2, N2, C2H4 gas storage and CO2/N2, CO2/CH4, CO2/H2, C2H4/CH4 selectivity
    Serafin, Jaroslaw
    Dziejarski, Bartosz
    Rodriguez-Estupinan, Paola
    Fernandez, Valentina Bernal
    Giraldo, Liliana
    Srenscek-Nazzal, Joanna
    Michalkiewicz, Beata
    Moreno-Pirajan, Juan Carlos
    FUEL, 2024, 374
  • [9] N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4
    Ning, Hui
    Mao, Qinhu
    Wang, Wenhang
    Yang, Zhongxue
    Wang, Xiaoshan
    Zhao, Qingshan
    Song, Yan
    Wu, Mingbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 785 : 7 - 12
  • [10] Stabilizing Cu2O for enhancing selectivity of CO2 electroreduction to C2H4 with the modification of Pd nanoparticles
    Xiao, Difei
    Bao, Xiaolei
    Zhang, Minghui
    Li, Zaiqi
    Wang, Zeyan
    Gao, Yugang
    Zheng, Zhaoke
    Wang, Peng
    Cheng, Hefeng
    Liu, Yuanyuan
    Dai, Ying
    Huang, Baibiao
    CHEMICAL ENGINEERING JOURNAL, 2023, 452