Gaussian Inference in Predictive Regressions for Stock Returns

被引:0
|
作者
Demetrescu, Matei [1 ]
Hillmann, Benjamin [2 ]
机构
[1] TU Dortmund Univ, Dept Stat, D-44227 Dortmund, Germany
[2] Christian Albrechts Univ Kiel, Inst Stat & Econometr, Olshausenstr 40-60, D-24118 Kiel, Germany
关键词
extremum estimation; predictive power; unknown persistence; C12 (Hypothesis Testing); C32 (Time-Series Models); G17 (Financial Forecasting and Simulation); PARAMETER INSTABILITY; STOCHASTIC INTEGRALS; QUANTILE REGRESSION; FALSE DISCOVERIES; ASYMPTOTIC THEORY; TESTS; PERFORMANCE;
D O I
10.1093/jjfinec/nbaf004
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Predictive regressions are an important tool in empirical finance. Under persistent predictors and so-called predictive regression endogeneity, OLS-based estimators and tests exhibit nonnormal limiting distributions. M estimators in such predictive regressions inherit these traits. The limiting distributions of different M estimators and M estimation-based tests of predictability depend on the same non-standard component. We exploit this to eliminate the nonstandard component and obtain standard normal test statistics of no predictability by building suitable linear combinations of two different M-based t ratios. This further enables us to set up a fixed-regressors bootstrap procedure to avoid the multiple-testing problem when applying the new test in rolling subsamples. Examining the predictability of U.S. stock returns, we find evidence for stock return predictability in volatile business cycle periods, such as World War II, Oil Crisis and Great Recession.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A model for stock market returns: Non-Gaussian fluctuations and financial factors
    Craven B.D.
    Islam S.M.N.
    Review of Quantitative Finance and Accounting, 2008, 30 (4) : 355 - 370
  • [32] Polynomial Regressions and Nonsense Inference
    Ventosa-Santaularia, Daniel
    Rodriguez-Caballero, Carlos Vladimir
    ECONOMETRICS, 2013, 1 (03) : 236 - 248
  • [33] On bootstrap inference in cointegrating regressions
    Psaradakis, Z
    ECONOMICS LETTERS, 2001, 72 (01) : 1 - 10
  • [34] On testing inference in beta regressions
    Cribari-Neto, Francisco
    Queiroz, Marcela P. F.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (01) : 186 - 203
  • [35] Balanced predictive regressions
    Ren, Yu
    Tu, Yundong
    Yi, Yanping
    JOURNAL OF EMPIRICAL FINANCE, 2019, 54 : 118 - 142
  • [36] Determining what drives stock returns: Proper inference is crucial: Evidence from the UK
    Ma, Jun
    Wohar, Mark E.
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2014, 33 : 371 - 390
  • [37] The predictive power of Bitcoin prices for the realized volatility of US stock sector returns
    Elie Bouri
    Afees A. Salisu
    Rangan Gupta
    Financial Innovation, 9
  • [38] The predictive power of Bitcoin prices for the realized volatility of US stock sector returns
    Bouri, Elie
    Salisu, Afees A.
    Gupta, Rangan
    FINANCIAL INNOVATION, 2023, 9 (01)
  • [39] From text to treasure: the predictive superiority of a FinTech index in stock market returns
    Guo, Yangli
    Ma, Feng
    Wang, Yizhi
    Zhong, Juandan
    EUROPEAN JOURNAL OF FINANCE, 2024,
  • [40] Production function regressions, returns to scale, and externalities
    Burnside, C
    JOURNAL OF MONETARY ECONOMICS, 1996, 37 (02) : 177 - 201