Gaussian Inference in Predictive Regressions for Stock Returns

被引:0
|
作者
Demetrescu, Matei [1 ]
Hillmann, Benjamin [2 ]
机构
[1] TU Dortmund Univ, Dept Stat, D-44227 Dortmund, Germany
[2] Christian Albrechts Univ Kiel, Inst Stat & Econometr, Olshausenstr 40-60, D-24118 Kiel, Germany
关键词
extremum estimation; predictive power; unknown persistence; C12 (Hypothesis Testing); C32 (Time-Series Models); G17 (Financial Forecasting and Simulation); PARAMETER INSTABILITY; STOCHASTIC INTEGRALS; QUANTILE REGRESSION; FALSE DISCOVERIES; ASYMPTOTIC THEORY; TESTS; PERFORMANCE;
D O I
10.1093/jjfinec/nbaf004
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Predictive regressions are an important tool in empirical finance. Under persistent predictors and so-called predictive regression endogeneity, OLS-based estimators and tests exhibit nonnormal limiting distributions. M estimators in such predictive regressions inherit these traits. The limiting distributions of different M estimators and M estimation-based tests of predictability depend on the same non-standard component. We exploit this to eliminate the nonstandard component and obtain standard normal test statistics of no predictability by building suitable linear combinations of two different M-based t ratios. This further enables us to set up a fixed-regressors bootstrap procedure to avoid the multiple-testing problem when applying the new test in rolling subsamples. Examining the predictability of U.S. stock returns, we find evidence for stock return predictability in volatile business cycle periods, such as World War II, Oil Crisis and Great Recession.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] DIVIDEND YIELDS AND EXPECTED STOCK RETURNS - ALTERNATIVE PROCEDURES FOR INFERENCE AND MEASUREMENT
    HODRICK, RJ
    REVIEW OF FINANCIAL STUDIES, 1992, 5 (03): : 357 - 386
  • [22] Stock returns in Shenzhen, China: in search of the best predictive model
    Hernandez Rodriguez, Clemente
    Cervantes Zepeda, Mauricio
    PORTES-REVISTA MEXICANA DE ESTUDIOS SOBRE LA CUENCA DEL PACIFICO, 2010, 4 (07): : 109 - 130
  • [23] Order restricted inference for testing the investors' attention effect on stock returns
    Kim, Youngrae
    Lim, Johan
    Lee, Sungim
    Choi, Sujung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2018, 31 (03) : 409 - 416
  • [24] The influence and predictive powers of mixed-frequency individual stock sentiment on stock returns
    Wang, Ruina
    Li, Jinfang
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2021, 58
  • [25] ML-Based Predictive Modelling of Stock Market Returns
    Bogdanova, Boryana
    Stancheva-Todorova, Eleonora
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [26] Enhancing stock ranking forecasting by modeling returns with heteroscedastic Gaussian Distribution
    Yang, Jiahao
    Fang, Ran
    Zhang, Ming
    Zhang, Wenkai
    Zhou, Jun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 664
  • [27] Metal Returns, Stock Returns and Stock Market Volatility
    Zevallos, Mauricio
    del Carpio, Carlos
    REVISTA ECONOMIA, 2015, 38 (75): : 101 - 122
  • [28] Stock Returns Predictive Power Based on Residual Income Valuation Model
    Sun Jingli
    Xiao Xiang
    Zhang Lan
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 176 - 180
  • [29] 'Deja vol': Predictive regressions for aggregate stock market volatility using macroeconomic variables
    Paye, Bradley S.
    JOURNAL OF FINANCIAL ECONOMICS, 2012, 106 (03) : 527 - 546
  • [30] New results on the predictive value of crude oil for US stock returns
    Brigida, Matt
    STUDIES IN ECONOMICS AND FINANCE, 2018, 35 (01) : 97 - 108