Gaussian Inference in Predictive Regressions for Stock Returns

被引:0
|
作者
Demetrescu, Matei [1 ]
Hillmann, Benjamin [2 ]
机构
[1] TU Dortmund Univ, Dept Stat, D-44227 Dortmund, Germany
[2] Christian Albrechts Univ Kiel, Inst Stat & Econometr, Olshausenstr 40-60, D-24118 Kiel, Germany
关键词
extremum estimation; predictive power; unknown persistence; C12 (Hypothesis Testing); C32 (Time-Series Models); G17 (Financial Forecasting and Simulation); PARAMETER INSTABILITY; STOCHASTIC INTEGRALS; QUANTILE REGRESSION; FALSE DISCOVERIES; ASYMPTOTIC THEORY; TESTS; PERFORMANCE;
D O I
10.1093/jjfinec/nbaf004
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Predictive regressions are an important tool in empirical finance. Under persistent predictors and so-called predictive regression endogeneity, OLS-based estimators and tests exhibit nonnormal limiting distributions. M estimators in such predictive regressions inherit these traits. The limiting distributions of different M estimators and M estimation-based tests of predictability depend on the same non-standard component. We exploit this to eliminate the nonstandard component and obtain standard normal test statistics of no predictability by building suitable linear combinations of two different M-based t ratios. This further enables us to set up a fixed-regressors bootstrap procedure to avoid the multiple-testing problem when applying the new test in rolling subsamples. Examining the predictability of U.S. stock returns, we find evidence for stock return predictability in volatile business cycle periods, such as World War II, Oil Crisis and Great Recession.
引用
收藏
页数:21
相关论文
共 50 条