Fatigue crack growth behavior of wire arc additively manufactured 316L austenitic stainless steel

被引:0
|
作者
Chen, Yangyu [1 ,2 ]
Chen, Man-Tai [1 ,2 ]
Zhao, Ou [3 ]
Rossi, Barbara [4 ,5 ]
Ruan, Xiongfeng [4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Civil Engn, Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
[4] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
[5] KULeuven, Fac Engn Technol, Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Austenitic stainless steel; Fatigue crack growth; Fractography; Metallic 3D printing; Wire arc additive manufacturing (WAAM);
D O I
10.1016/j.tws.2025.113182
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigated the fatigue crack growth (FCG) performance of 316L austenitic stainless steel produced by wire arc additive manufacturing (WAAM) through fatigue tests and fractographic analyses. A total of 11 compact tension (CT) specimens were designed considering three minimum-to-maximum load ratios (R= 0.1, 0.3, 0.5), various load directions (theta = 0 degrees, 30 degrees, 45 degrees, 60 degrees, 90 degrees) and two surface conditions (milled and as-built). Details of specimen fabrication and design as well as fatigue test setup are presented. The Paris' law material constants of all specimens were derived. The influences of various parameters on the FCG behavior such as crack length development histories and fatigue crack growth rate (FCGR) are discussed. The test results demonstrated that the fatigue crack growth rate increased with the load ratio, and that the specimen with theta = 0 degrees, i.e. load parallel to the welding pass, possessed higher FCGR value than the counterparts characterized by other load directions. The as-built and milled specimens had similar FCG performance. The FCG test results of WAAM 316L austenitic stainless steel obtained in this study were compared against those of 316L steels manufactured by traditional hot-rolling and selective laser melting as well as the predictions by current international standards (BS 7910 and IIW-1823-07). The fractographies of typical CT specimens from macroscopic and microscopic perspectives were analyzed. Transgranular fracture was observed as evidenced by abundant fatigue striations, secondary cracks and dimples.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
    Voloskov, Boris
    Evlashin, Stanislav
    Dagesyan, Sarkis
    Abaimov, Sergey
    Akhatov, Iskander
    Sergeichev, Ivan
    MATERIALS, 2020, 13 (15)
  • [12] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [13] Fatigue crack growth in 316L stainless steel
    Wheatley, G
    Niefanger, R
    Estrin, Y
    Hu, XZ
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 631 - 636
  • [14] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378
  • [15] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Thak Sang Byun
    Maxim N. Gussev
    Timothy G. Lach
    JOM, 2024, 76 : 362 - 378
  • [16] Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water
    Lou, Xiaoyuan
    Othon, Michelle A.
    Rebak, Raul B.
    CORROSION SCIENCE, 2017, 127 : 120 - 130
  • [17] Fatigue behavior of Austenitic Type 316L Stainless Steel
    Mohammad, K. A.
    Ali, Aidy
    Sahari, B. B.
    Abdullah, S.
    1ST INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH 2011 (ICMER2011), 2012, 36
  • [18] Effect of Nitrogen on the Fatigue Crack Growth Behavior of 316L Austenitic Stainless Steels
    Babu, M. Nani
    Sasikala, G.
    Sadananda, K.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (07): : 3091 - 3105
  • [19] Effect of Nitrogen on the Fatigue Crack Growth Behavior of 316L Austenitic Stainless Steels
    M. Nani Babu
    G. Sasikala
    K. Sadananda
    Metallurgical and Materials Transactions A, 2019, 50 : 3091 - 3105
  • [20] Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire plus arc additive manufacturing
    Ul Ahsan, Md. Rumman
    Tanvir, Ali Newaz Mohammad
    Ross, Taylor
    Elsawy, Ahmed
    Oh, Min-Suk
    Kim, Duck Bong
    RAPID PROTOTYPING JOURNAL, 2020, 26 (03) : 519 - 530