Fatigue crack growth behavior of wire arc additively manufactured 316L austenitic stainless steel

被引:0
|
作者
Chen, Yangyu [1 ,2 ]
Chen, Man-Tai [1 ,2 ]
Zhao, Ou [3 ]
Rossi, Barbara [4 ,5 ]
Ruan, Xiongfeng [4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Civil Engn, Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
[4] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
[5] KULeuven, Fac Engn Technol, Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Austenitic stainless steel; Fatigue crack growth; Fractography; Metallic 3D printing; Wire arc additive manufacturing (WAAM);
D O I
10.1016/j.tws.2025.113182
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigated the fatigue crack growth (FCG) performance of 316L austenitic stainless steel produced by wire arc additive manufacturing (WAAM) through fatigue tests and fractographic analyses. A total of 11 compact tension (CT) specimens were designed considering three minimum-to-maximum load ratios (R= 0.1, 0.3, 0.5), various load directions (theta = 0 degrees, 30 degrees, 45 degrees, 60 degrees, 90 degrees) and two surface conditions (milled and as-built). Details of specimen fabrication and design as well as fatigue test setup are presented. The Paris' law material constants of all specimens were derived. The influences of various parameters on the FCG behavior such as crack length development histories and fatigue crack growth rate (FCGR) are discussed. The test results demonstrated that the fatigue crack growth rate increased with the load ratio, and that the specimen with theta = 0 degrees, i.e. load parallel to the welding pass, possessed higher FCGR value than the counterparts characterized by other load directions. The as-built and milled specimens had similar FCG performance. The FCG test results of WAAM 316L austenitic stainless steel obtained in this study were compared against those of 316L steels manufactured by traditional hot-rolling and selective laser melting as well as the predictions by current international standards (BS 7910 and IIW-1823-07). The fractographies of typical CT specimens from macroscopic and microscopic perspectives were analyzed. Transgranular fracture was observed as evidenced by abundant fatigue striations, secondary cracks and dimples.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anisotropic fatigue crack propagation in wire arc additively manufactured 316L stainless steel
    Ajay, V.
    Nakrani, Jignesh
    Mishra, Neeraj K.
    Shrivastava, Amber
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 177
  • [2] Fatigue strength of additively manufactured 316L austenitic stainless steel
    Kumar, Punit
    Jayaraj, R.
    Suryawanshi, J.
    Satwik, U. R.
    McKinnell, J.
    Ramamurty, U.
    ACTA MATERIALIA, 2020, 199 (199) : 225 - 239
  • [3] Behavior of wire arc additively manufactured 316L austenitic stainless steel single shear bolted connections
    Zuo, Wenkang
    Chen, Man-Tai
    Zhao, Ou
    Su, Andi
    Liu, Si-Wei
    Xu, Fangda
    Huang, Yuner
    Cheng, Bin
    THIN-WALLED STRUCTURES, 2024, 202
  • [4] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [5] The influence of printing strategies on fatigue crack growth behavior of an additively manufactured AISI 316L stainless steel
    Camacho, Jose
    Martins, Rui F. F.
    Branco, Ricardo
    Raimundo, Antonio
    Malca, Candida
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (10) : 3953 - 3965
  • [6] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [7] Mechanical performance of additively manufactured austenitic 316L stainless steel
    Kim, Kyu-Tae
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 244 - 254
  • [8] THE MECHANICAL PERFORMANCE OF ADDITIVELY MANUFACTURED 316L AUSTENITIC STAINLESS STEEL
    Wisbey, Andrew
    Coon, David
    Chatterton, Mark
    Barras, Josh
    Guo, Da
    Yan, Kun
    Callaghan, Mark
    Mirihanage, Wajira
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [9] Structural representation of additively manufactured 316L austenitic stainless steel
    Bronkhorst, C. A.
    Mayeur, J. R.
    Livescu, V.
    Pokharel, R.
    Brown, D. W.
    Gray, G. T., III
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 118 : 70 - 86
  • [10] On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
    Riemer, A.
    Leuders, S.
    Thoene, M.
    Richard, H. A.
    Troester, T.
    Niendorf, T.
    ENGINEERING FRACTURE MECHANICS, 2014, 120 : 15 - 25