Household Dengue Vulnerability Information Model for Disseminating Vector Surveillance

被引:0
|
作者
Hernawan, Andri D. [1 ,2 ]
Satoto, Tri B. Tunggul [3 ]
Hadmoko, Danang S. [4 ]
Madyaningrum, Ema [5 ]
机构
[1] Univ Muhammadiyah Pontianak, Fac Hlth Sci, Pontianak, Indonesia
[2] Univ Gadjah Mada, Fac Med Publ Hlth & Nursing, Yogyakarta, Indonesia
[3] Univ Gadjah Mada, Dept Parasitol, Fac Med Publ Hlth & Nursing, Yogyakarta, Indonesia
[4] Univ Gadjah Mada, Fac Geog, Dept Environm Geog, Yogyakarta, Indonesia
[5] Univ Gadjah Mada, Fac Med Publ Hlth & Nursing, Dept Mental & Community Hlth Nursing, Yogyakarta, Indonesia
关键词
HVI model; MPI-HSS; Dissemination vector surveillance; COEFFICIENT ALPHA; HEALTH; CITY;
D O I
10.56808/2586-940X.1109
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: The mosquito perception index and habitat suitability score (MPI-HSS) can be a breakthrough for obtaining dengue transmission vulnerability information in households. Routinely observed predictor data for vector density can be used to obtain region susceptibility information. This study develops Household Vulnerability Information (HVI) and Area Susceptibility Information (ASI) models for the dissemination of Aedes vector surveillance information in the community. Methods: This is a cross-sectional study. The HVI model used the MPI-HSS indicator with data collected from 368 households in Pontianak Municipality, Kalimantan Barat, Indonesia. The ASI model used secondary data on rainfall, humidity, population density, and larva-free rate (LFA) from 2018 to 2022. Confirmatory Factor Analysis (CFA) was used for validation the MPI-HSS indicators. Logistic regression was used to determine HVI and ASI models. Results: CFA results confirm that the MPI-HSS indicator can be used to determine vector density with factor loadings ranging from 0.567 to 0.890. The HVI model from the MPI-HSS indicator has a probability score of 80.6%. The ASI can be predicted from rainfall, humidity, population density, and LFA with a probability of 0.964. Validation of the ASI model against 2022 secondary data shows a 50% match. Conclusion: The HVI model using the MPI-HSS instrument and ASI with the predictor variables can be used to disseminate information about Aedes vector surveillance. The potential dissemination of this information can be further developed using mobile apps that enable to independently input requested data for user convenience.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Host-vector interaction in dengue: a simple mathematical model
    Tennakone, K.
    De Silva, L. Ajith
    CEYLON MEDICAL JOURNAL, 2018, 63 (02) : 58 - 64
  • [42] Competitive exclusion in a vector-host model for the dengue fever
    Zhilan Feng
    Jorge X. Velasco-Hernández
    Journal of Mathematical Biology, 1997, 35 : 523 - 544
  • [43] Household vulnerability to climate change in South Africa: A multilevel regression model
    Mthethwa, Sandile
    Wale Zegeye, Edilegnaw
    DEVELOPMENT SOUTHERN AFRICA, 2023, 40 (02) : 466 - 481
  • [44] ASSESSING CARBON DIOXIDE AND SYNTHETIC LURE-BAITED TRAPS FOR DENGUE AND CHIKUNGUNYA VECTOR SURVEILLANCE
    Harwood, James F.
    Arimoto, Hanayo
    Nunn, Peter
    Richardson, Alec G.
    Obenauer, Peter J.
    JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION, 2015, 31 (03) : 242 - 247
  • [45] Ovitrap surveillance of dengue vector mosquitoes in Bandung City, West Java']Java Province, Indonesia
    Sasmita, Hadian Iman
    Neoh, Kok-Boon
    Yusmalinar, Sri
    Anggraeni, Tjandra
    Chang, Niann-Tai
    Bong, Lee-Jin
    Putra, Ramadhani Eka
    Sebayang, Amelia
    Silalahi, Christina Natalina
    Ahmad, Intan
    Tu, Wu-Chun
    PLOS NEGLECTED TROPICAL DISEASES, 2021, 15 (10):
  • [46] Ibague Saludable: A novel tool of Information and Communication Technologies for surveillance, prevention and control of dengue, chikungunya, Zika and other vector-borne diseases in Colombia
    Jaramillo-Martinez, Guillermo A.
    Vasquez-Serna, Heriberto
    Chavarro-Ordonez, Ruthdy
    Rojas-Gomez, Oscar F.
    Jimenez-Canizales, Carlos E.
    Rodriguez-Morales, Alfonso J.
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2018, 11 (01) : 145 - 146
  • [47] Impact of information intervention on stochastic dengue epidemic model
    Liu, Peijiang
    Din, Anwarud
    Zenab
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5725 - 5739
  • [48] MODEL DEVELOPMENT FOR OUTBREAK OF DENGUE FEVER SURVEILLANCE SYSTEM IN DISTRICT LEVEL
    Damapong, Pongmada
    Damapong, Peerada
    Jumparwai, Supat
    INTERNATIONAL JOURNAL OF GEOMATE, 2016, 11 (27): : 2777 - 2781
  • [49] A context vector model for information retrieval
    Billhardt, H
    Borrajo, D
    Maojo, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2002, 53 (03): : 236 - 249
  • [50] SOCIO-ECOLOGICAL FACTORS AND PREVENTIVE ACTIONS ASSOCIATED WITH DENGUE INFECTIONS AT THE HOUSEHOLD-LEVEL IDENTIFIED IN A PROSPECTIVE DENGUE SURVEILLANCE STUDY IN MACHALA, ECUADOR
    Kenneson, Aileen
    Beltran-Ayala, Efrain
    Borbor-Cordova, Mercy
    Polhemus, Mark
    Ryan, Sadie
    Endy, TImothy
    Ibarra, Anna Stewart
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 97 (05): : 434 - 434