Household Dengue Vulnerability Information Model for Disseminating Vector Surveillance

被引:0
|
作者
Hernawan, Andri D. [1 ,2 ]
Satoto, Tri B. Tunggul [3 ]
Hadmoko, Danang S. [4 ]
Madyaningrum, Ema [5 ]
机构
[1] Univ Muhammadiyah Pontianak, Fac Hlth Sci, Pontianak, Indonesia
[2] Univ Gadjah Mada, Fac Med Publ Hlth & Nursing, Yogyakarta, Indonesia
[3] Univ Gadjah Mada, Dept Parasitol, Fac Med Publ Hlth & Nursing, Yogyakarta, Indonesia
[4] Univ Gadjah Mada, Fac Geog, Dept Environm Geog, Yogyakarta, Indonesia
[5] Univ Gadjah Mada, Fac Med Publ Hlth & Nursing, Dept Mental & Community Hlth Nursing, Yogyakarta, Indonesia
关键词
HVI model; MPI-HSS; Dissemination vector surveillance; COEFFICIENT ALPHA; HEALTH; CITY;
D O I
10.56808/2586-940X.1109
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: The mosquito perception index and habitat suitability score (MPI-HSS) can be a breakthrough for obtaining dengue transmission vulnerability information in households. Routinely observed predictor data for vector density can be used to obtain region susceptibility information. This study develops Household Vulnerability Information (HVI) and Area Susceptibility Information (ASI) models for the dissemination of Aedes vector surveillance information in the community. Methods: This is a cross-sectional study. The HVI model used the MPI-HSS indicator with data collected from 368 households in Pontianak Municipality, Kalimantan Barat, Indonesia. The ASI model used secondary data on rainfall, humidity, population density, and larva-free rate (LFA) from 2018 to 2022. Confirmatory Factor Analysis (CFA) was used for validation the MPI-HSS indicators. Logistic regression was used to determine HVI and ASI models. Results: CFA results confirm that the MPI-HSS indicator can be used to determine vector density with factor loadings ranging from 0.567 to 0.890. The HVI model from the MPI-HSS indicator has a probability score of 80.6%. The ASI can be predicted from rainfall, humidity, population density, and LFA with a probability of 0.964. Validation of the ASI model against 2022 secondary data shows a 50% match. Conclusion: The HVI model using the MPI-HSS instrument and ASI with the predictor variables can be used to disseminate information about Aedes vector surveillance. The potential dissemination of this information can be further developed using mobile apps that enable to independently input requested data for user convenience.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An interdisciplinary study: disseminating information on dengue prevention and control in the world-famous travel destination, Bali, Indonesia
    Minako Jen Yoshikawa
    Rita Kusriastuti
    Christina Liew
    Evolutionary and Institutional Economics Review, 2020, 17 : 265 - 293
  • [32] DEVELOPMENT OF A MODEL FOR DISSEMINATING AGRICULTURAL TECHNOLOGY INFORMATION BASED ON SIGNALING THEORY
    Wang, Xiaohong
    Chen, Baofeng
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOLUME 3, 2009, : 1551 - 1558
  • [33] ENTOMOLOGICAL SURVEILLANCE FOR THE VECTOR OF YELLOW FEVER/DENGUE/CHIKUNGUNYA IN AND AROUND PORTS OF GOA, INDIA
    Sharma, Abhay Kumar
    Kumar, Kaushal
    Singh, Sukhvir
    INTERNATIONAL JOURNAL OF PURE AND APPLIED ZOOLOGY, 2015, 3 (03) : 204 - 209
  • [34] Entomological Surveillance for Zika and Dengue Virus in Aedes Mosquitoes: Implications for Vector Control in Thailand
    Kosoltanapiwat, Nathamon
    Tongshoob, Jarinee
    Singkhaimuk, Preeraya
    Nitatsukprasert, Chanyapat
    Davidson, Silas A.
    Ponlawat, Alongkot
    PATHOGENS, 2020, 9 (06): : 1 - 11
  • [35] MALDI-TOF MS: An effective tool for a global surveillance of dengue vector species
    Rakotonirina, Antsa
    Pol, Morgane
    Raharimalala, Fara Nantenaina
    Ballan, Valentine
    Kainiu, Malia
    Boyer, Sebastien
    Kilama, Sosiasi
    Marcombe, Sebastien
    Russet, Sylvie
    Barsac, Emilie
    Vineshwaran, Rama
    Selemago, Malia Kalemeli
    Jessop, Vincent
    Robic, Genevieve
    Girod, Romain
    Brey, Paul T.
    Colot, Julien
    Dupont-Rouzeyrol, Myrielle
    Richard, Vincent
    Pocquet, Nicolas
    PLOS ONE, 2022, 17 (10):
  • [36] Dengue Vector Surveillance Programs: A Review of Methodological Diversity in Some Endemic and Epidemic Countries
    Azil, Aishah H.
    Li, Ming
    Williams, Craig R.
    ASIA-PACIFIC JOURNAL OF PUBLIC HEALTH, 2011, 23 (06) : 827 - 842
  • [37] An entomological surveillance system based on open spatial information for participative dengue control
    Regis, Leda
    Souza, Wayner V.
    Furtado, Andre F.
    Fonseca, Claudio D.
    Silveira, Jose C., Jr.
    Ribeiro, Paulo J., Jr.
    Melo-Santos, Maria Alice V.
    Carvalho, Marilia S.
    Monteiro, Antonio M. V.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2009, 81 (04): : 655 - 662
  • [38] Competitive exclusion in a vector-host model for the Dengue fever
    Feng, ZL
    VelascoHernandez, JX
    JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (05) : 523 - 544
  • [39] Complex behaviour in a dengue model with a seasonally varying vector population
    McLennan-Smith, Timothy A.
    Mercer, Geoffry N.
    MATHEMATICAL BIOSCIENCES, 2014, 248 : 22 - 30
  • [40] The Effects of Vector Movement and Distribution in a Mathematical Model of Dengue Transmission
    Chao, Dennis L.
    Longini, Ira M., Jr.
    Halloran, M. Elizabeth
    PLOS ONE, 2013, 8 (10):