Ordinal Causal Discovery

被引:0
|
作者
Ni, Yang [1 ]
Mallick, Bani [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NETWORKS; DISTANCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery for purely observational, categorical data is a long-standing challenging problem. Unlike continuous data, the vast majority of existing methods for categorical data focus on inferring the Markov equivalence class only, which leaves the direction of some causal relationships undetermined. This paper proposes an identifiable ordinal causal discovery method that exploits the ordinal information contained in many real-world applications to uniquely identify the causal structure. The proposed method is applicable beyond ordinal data via data discretization. Through real-world and synthetic experiments, we demonstrate that the proposed ordinal causal discovery method combined with simple score-and-search algorithms has favorable and robust performance compared to state-of-the-art alternative methods in both ordinal categorical and non-categorical data. An accompanied R package OCD is freely available at the first author's website.
引用
收藏
页码:1530 / 1540
页数:11
相关论文
共 50 条
  • [31] Incremental Causal Discovery and Visualization
    Holst, Anders
    Pashami, Sepideh
    Bae, Juhee
    IDM-WSDM 2019: WORKSHOP ON INTERACTIVE DATA MINING, 2019,
  • [32] Causal discovery with prior information
    O'Donnell, R. T.
    Nicholson, A. E.
    Han, B.
    Korb, K. B.
    Alam, M. J.
    Hope, L. R.
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 1162 - +
  • [33] Ensembling MML causal discovery
    Dai, HH
    Li, G
    Zhou, ZH
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2004, 3056 : 260 - 271
  • [34] Nonlinear Causal Discovery with Confounders
    Li, Chunlin
    Shen, Xiaotong
    Pan, Wei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1205 - 1214
  • [35] A new causal discovery heuristic
    S. D. Prestwich
    S. A. Tarim
    I. Ozkan
    Annals of Mathematics and Artificial Intelligence, 2018, 82 : 245 - 259
  • [36] Knowledge transfer for causal discovery
    Rodriguez-Lopez, Veronica
    Sucar, Luis Enrique
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 143 : 1 - 25
  • [37] Introduction to the foundations of causal discovery
    Eberhardt F.
    International Journal of Data Science and Analytics, 2017, 3 (02) : 81 - 91
  • [38] Tuning Causal Discovery Algorithms
    Biza, Konstantina
    Tsamardinos, Ioannis
    Triantafillou, Sofia
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 17 - 28
  • [39] Power analysis for causal discovery
    Erich Kummerfeld
    Leland Williams
    Sisi Ma
    International Journal of Data Science and Analytics, 2024, 17 : 289 - 304
  • [40] CAUSAL DISCOVERY WITH REINFORCEMENT LEARNING
    Huawei Noah's Ark Lab
    不详
    Int. Conf. Learn. Represent., ICLR,