Ordinal Causal Discovery

被引:0
|
作者
Ni, Yang [1 ]
Mallick, Bani [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NETWORKS; DISTANCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery for purely observational, categorical data is a long-standing challenging problem. Unlike continuous data, the vast majority of existing methods for categorical data focus on inferring the Markov equivalence class only, which leaves the direction of some causal relationships undetermined. This paper proposes an identifiable ordinal causal discovery method that exploits the ordinal information contained in many real-world applications to uniquely identify the causal structure. The proposed method is applicable beyond ordinal data via data discretization. Through real-world and synthetic experiments, we demonstrate that the proposed ordinal causal discovery method combined with simple score-and-search algorithms has favorable and robust performance compared to state-of-the-art alternative methods in both ordinal categorical and non-categorical data. An accompanied R package OCD is freely available at the first author's website.
引用
收藏
页码:1530 / 1540
页数:11
相关论文
共 50 条
  • [21] Geospatial Causal Principle and Causal Discovery for Geospatial Effects
    Li H.
    Luo Q.
    He S.
    Ren Z.
    Liu Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (11): : 1800 - 1812
  • [22] Causal discovery toolbox: Uncovering causal relationships in python
    Kalainathan, Diviyan
    Goudet, Olivier
    Dutta, Ritik
    1600, Microtome Publishing (21):
  • [23] Causality, causal discovery, causal inference and counterfactuals in Civil Engineering: Causal machine learning and case studies for knowledge discovery
    Naser, M. Z.
    Tapeh, Arash Teymori Gharah
    COMPUTERS AND CONCRETE, 2023, 31 (04): : 277 - 292
  • [24] Causal discovery with a mixture of DAGs
    Strobl, Eric, V
    MACHINE LEARNING, 2023, 112 (11) : 4201 - 4225
  • [25] A new causal discovery heuristic
    Prestwich, S. D.
    Tarim, S. A.
    Ozkan, I.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2018, 82 (04) : 245 - 259
  • [26] A quantum causal discovery algorithm
    Christina Giarmatzi
    Fabio Costa
    npj Quantum Information, 4
  • [27] Differentiable Causal Backdoor Discovery
    Gultchin, Limor
    Kusner, Matt J.
    Kanade, Varun
    Silva, Ricardo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3970 - 3978
  • [28] Causal discovery with a mixture of DAGs
    Eric V. Strobl
    Machine Learning, 2023, 112 : 4201 - 4225
  • [29] Power analysis for causal discovery
    Kummerfeld, Erich
    Williams, Leland
    Ma, Sisi
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024, 17 (03) : 289 - 304
  • [30] Experiment Selection for Causal Discovery
    Hyttinen, Antti
    Eberhardt, Frederick
    Hoyer, Patrik O.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 3041 - 3071