ON G- ( n, d )-RINGS AND n-COHERENT RINGS

被引:0
|
作者
Li, Weiqing [1 ]
机构
[1] Xiangnan Univ, Dept Math, Chenzhou 423000, Hunan, Peoples R China
关键词
n-Coherent ring; G-(n; d )-ring; strongly ( n; d )-injective (flat) mod ule; cotorsion theory; TILTING MODULES; COVERS; (N; DIMENSIONS; ENVELOPES; PAIRS;
D O I
10.24330/ieja.1502064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let n and d be non-negative integers. We introduce the concept of strongly (n, d)-injective modules to characterize n-coherent rings. For a right perfect ring R, it is shown that R is right n-coherent if and only if every right R-module has a strongly (n, d)-injective (pre)cover for some non-negative integer d <= n. We also provide equivalent conditions for an (n, d)-ring being n-coherent. Then we investigate the so-called right G-(n, d)-rings, over which every n-presented right module has Gorenstein projective dimension at most d. Finally, we prove a Gorenstein analogue of Costa's first conjecture.
引用
收藏
页码:147 / 178
页数:32
相关论文
共 50 条
  • [21] n-X-COHERENT RINGS
    Bennis, Driss
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 7 : 128 - 139
  • [22] On (n, d)-Krull rings
    Mahdou, N
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (03) : 1139 - 1146
  • [23] On (m, n)-injective modules and (m, n)-coherent rings
    Zhang, XX
    Chen, JL
    Zhang, J
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 149 - 160
  • [24] STRONGLY J-N-COHERENT RINGS
    Zhu, Zhanmin
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 36 : 134 - 156
  • [25] Slightly (m, n)-coherent rings and (m,n)-homological dimensions
    Zhao, Renyu
    Li, Ruilin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4809 - 4823
  • [26] (m, n)-Injective and (m, n)-coherent endomorphism rings of modules
    Mao, Lixin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [27] n-COCOHERENT RINGS, n-COSEMIHEREDITARY RINGS AND n-V-RINGS
    Zhu, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (04) : 809 - 822
  • [28] ON n-COPRESENTED MODULES AND n-CO-COHERENT RINGS
    Bennis, Driss
    Bouzraa, Habib
    Kaed, Abdul-Qawe
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 12 : 162 - 174
  • [29] HOMOLOGICAL DIMENSIONS OF N0-COHERENT RINGS
    JENSEN, CU
    MATHEMATICA SCANDINAVICA, 1967, 20 (01) : 55 - &
  • [30] Modules Whose Endomorphism Rings Are (m, n)-Coherent
    Luo, Xiaoqiang
    Mao, Lixin
    ALGEBRA COLLOQUIUM, 2019, 26 (02) : 231 - 242