ON G- ( n, d )-RINGS AND n-COHERENT RINGS

被引:0
|
作者
Li, Weiqing [1 ]
机构
[1] Xiangnan Univ, Dept Math, Chenzhou 423000, Hunan, Peoples R China
关键词
n-Coherent ring; G-(n; d )-ring; strongly ( n; d )-injective (flat) mod ule; cotorsion theory; TILTING MODULES; COVERS; (N; DIMENSIONS; ENVELOPES; PAIRS;
D O I
10.24330/ieja.1502064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let n and d be non-negative integers. We introduce the concept of strongly (n, d)-injective modules to characterize n-coherent rings. For a right perfect ring R, it is shown that R is right n-coherent if and only if every right R-module has a strongly (n, d)-injective (pre)cover for some non-negative integer d <= n. We also provide equivalent conditions for an (n, d)-ring being n-coherent. Then we investigate the so-called right G-(n, d)-rings, over which every n-presented right module has Gorenstein projective dimension at most d. Finally, we prove a Gorenstein analogue of Costa's first conjecture.
引用
收藏
页码:147 / 178
页数:32
相关论文
共 50 条
  • [11] n-coherent rings in terms of complexes
    Lu Bo
    Liu Zhongkui
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 521 - 533
  • [12] ON n-SEMIHEREDITARY AND n-COHERENT RINGS
    Zhang, Xiaoxiang
    Chen, Jianlong
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 1 : 1 - 10
  • [13] Some results on n-coherent rings, n-hereditary rings and n-regular rings
    Zhu Z.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (1) : 81 - 94
  • [14] Some results on (n, d)-injective modules, (n, d)-flat modules and n-coherent rings
    Zhu, Zhanmin
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 505 - 513
  • [15] (n, d)-COCOHERENT RINGS, (n, d)-COSEMIHEREDITARY RINGS AND (n, d)-V-RINGS
    Zhu Zhanmin
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2021, 29 : 199 - 210
  • [16] Strongly (T, n)-Coherent Rings, (T, n)-Semihereditary Rings and (T, n)-Regular Rings
    Zhanmin Zhu
    Czechoslovak Mathematical Journal, 2020, 70 : 657 - 674
  • [17] Strongly (T,n)-Coherent Rings, (T,n)-Semihereditary Rings and (T,n)-Regular Rings
    Zhu, Zhanmin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (03) : 657 - 674
  • [18] When is D+M n-coherent and an (n,d)-domain?
    Dobbs, DE
    Kabbaj, SE
    Mahdou, N
    Sobrani, M
    ADVANCES IN COMMUTATIVE RING THEORY, 1999, 205 : 257 - 270
  • [19] I-n-Coherent Rings, I-n-Semihereditary Rings, and I-Regular Rings
    Zhu Zhanmin
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (06) : 857 - 883
  • [20] I-n-Coherent Rings, I-n-Semihereditary Rings, and I-Regular Rings
    Zhu Zhanmin
    Ukrainian Mathematical Journal, 2014, 66 : 857 - 883