Riemannian Conjugate Gradient Algorithms for Solving λ-Approximation of Stochastic Tensors and Applications

被引:0
|
作者
Liu, Dongdong [1 ]
Li, Wen [2 ]
Vong, Seak-Weng [3 ]
Li, Jiaofen [4 ]
Chen, Yannan [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
[3] Univ Macau, Dept Math, Macau, Peoples R China
[4] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
higher-order Markov chains; oblique manifold; Riemannian optimization; stochastic tensor;
D O I
10.1002/nla.70010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an optimal lambda-approximation model of stochastic tensors arising from higher-order Markov chains. For exploring a fast solver, we first transform the proposed model into a Riemannian optimization problem equivalently. Then we design two Riemannian optimization algorithms for solving the equivalent problem. Finally, some applications to approximate the solution of higher-order Markov chains are given. Several numerical examples including the practical data are given to demonstrate the efficiency of the proposed method.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Two hybrid conjugate gradient based algorithms on Riemannian manifolds with adaptive restart strategy for nonconvex optimization problems
    Jiang, Meixuan
    Wang, Yun
    Shao, Hu
    Wu, Ting
    Sun, Weiwei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 461
  • [42] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Khoa Trinh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [43] Randomized Stochastic Approximation Algorithms
    Amelin, Konstantin
    Granichin, Oleg
    Granichina, Olga
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 2827 - 2832
  • [44] Dynamics of stochastic approximation algorithms
    Benaïm, M
    SEMINAIRE DE PROBABILITES XXXIII, 1999, 1709 : 1 - 68
  • [45] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Trinh, Khoa
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [46] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Trinh, Khoa
    Journal of Machine Learning Research, 2019, 20
  • [47] Modified optimal Perry conjugate gradient method for solving system of monotone equations with applications
    Sabi, Jamilu
    Shah, Abdullah
    Stanimirovic, Predrag S.
    Ivanov, Branislav
    Waziri, Mohammed Yusuf
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 431 - 445
  • [48] Modified optimal Perry conjugate gradient method for solving system of monotone equations with applications
    Sabi'u, Jamilu
    Shah, Abdullah
    Stanimirovic, Predrag S.
    Ivanov, Branislav
    Waziri, Mohammed Yusuf
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 431 - 445
  • [49] A Modified Conjugate Gradient Method with Taylor Approximation: Applications in Electric Circuits and Image Restoration
    Alhawarat, Ahmad
    Masmali, Sultanah
    Masmali, Ibtisam
    Al-Baali, Mehiddin
    Ismail, Shahrina
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [50] Hybrid Riemannian conjugate gradient methods with global convergence properties
    Sakai, Hiroyuki
    Iiduka, Hideaki
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (03) : 811 - 830