Riemannian Conjugate Gradient Algorithms for Solving λ-Approximation of Stochastic Tensors and Applications

被引:0
|
作者
Liu, Dongdong [1 ]
Li, Wen [2 ]
Vong, Seak-Weng [3 ]
Li, Jiaofen [4 ]
Chen, Yannan [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
[3] Univ Macau, Dept Math, Macau, Peoples R China
[4] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
higher-order Markov chains; oblique manifold; Riemannian optimization; stochastic tensor;
D O I
10.1002/nla.70010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an optimal lambda-approximation model of stochastic tensors arising from higher-order Markov chains. For exploring a fast solver, we first transform the proposed model into a Riemannian optimization problem equivalently. Then we design two Riemannian optimization algorithms for solving the equivalent problem. Finally, some applications to approximate the solution of higher-order Markov chains are given. Several numerical examples including the practical data are given to demonstrate the efficiency of the proposed method.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Riemannian Stochastic Recursive Gradient Algorithm
    Kasai, Hiroyuki
    Sato, Hiroyuki
    Mishra, Bamdev
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [22] Stochastic Gradient Descent on Riemannian Manifolds
    Bonnabel, Silvere
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (09) : 2217 - 2229
  • [23] A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems
    Alnowibet, Khalid Abdulaziz
    Mahdi, Salem
    Alshamrani, Ahmad M.
    Sallam, Karam M.
    Mohamed, Ali Wagdy
    MATHEMATICS, 2022, 10 (19)
  • [24] The Kernel Conjugate Gradient Algorithms
    Zhang, Ming
    Wang, Xiaojian
    Chen, Xiaoming
    Zhang, Anxue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (16) : 4377 - 4387
  • [25] Stochastic conjugate gradient inversion
    2000, Sci Publ House (35):
  • [26] Stochastic conjugate gradient inversion
    Zhu, Peimin
    Wang, Jiaying
    Zhan, Zhengbin
    Gu, Hanming
    Zhu, Guangming
    2000, Sci Publ House (35):
  • [27] STOCHASTIC MODIFIED FLOWS FOR RIEMANNIAN STOCHASTIC GRADIENT DESCENT
    Gess, Benjamin
    Kassing, Sebastian
    Rana, Nimit
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 3288 - 3314
  • [28] Stochastic algorithms for solving structured low-rank matrix approximation problems
    Gillard, J. W.
    Zhigljavsky, A. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 21 (1-3) : 70 - 88
  • [29] A new, globally convergent Riemannian conjugate gradient method
    Sato, Hiroyuki
    Iwai, Toshihiro
    OPTIMIZATION, 2015, 64 (04) : 1011 - 1031
  • [30] A Riemannian conjugate gradient method for optimization on the Stiefel manifold
    Zhu, Xiaojing
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 67 (01) : 73 - 110