Construction of minimal binary linear codes with dimension n+3

被引:0
|
作者
Shaikh, Wajid M. [1 ]
Jain, Rupali S. [1 ]
Reddy, B. Surendranath [1 ]
Patil, Bhagyashri S. [1 ]
机构
[1] SRTMU Nanded, Sch Computat Sci, Nanded, India
关键词
Linear code; Minimal code; Weight distribution; Ashikhmin-Barg condition;
D O I
10.1007/s12095-024-00768-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, for n >= 6, we present the generic construction of binary linear codes of length 2(n) - 1 with dimension n + 3, and derive the necessary and sufficient condition for the constructed codes to be minimal. Using this generic construction, a new family of minimal binary linear codes violating the Ashikhmin-Barg condition will be constructed from a special class of Boolean functions. We also obtain the weight distribution of the constructed minimal binary linear codes. We will achieve minimal codes with the highest dimension, resulting in a better rate of transmission.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 50 条
  • [41] Parallel construction for constant dimension codes from mixed dimension construction
    He, Xianmang
    Zhang, Zusheng
    Tian, Si
    Wang, Jingli
    Chen, Yindong
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (01) : 227 - 241
  • [42] A Construction for Constant Dimension Codes from the Known Codes
    Zhou, Kunxiao
    Chen, Yindong
    Zhang, Zusheng
    Shi, Feng
    He, Xianmang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT I, 2021, 12937 : 253 - 262
  • [43] Variations on Minimal Linear Codes
    Cohen, Gerard
    Mesnager, Sihem
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 125 - 131
  • [44] Minimal supports in linear codes
    Ashikhmin, A
    Barg, A
    CRYPTOGRAPHY AND CODING: 5TH IMA CONFERENCE, 1995, 1025 : 13 - 13
  • [45] Minimal vectors in linear codes
    Ashikhmin, A
    Barg, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 2010 - 2017
  • [46] Minimal vectors in linear codes
    Ashikhmin, A.
    Barg, A.
    2010, IEEE, Piscataway, NJ, United States (44)
  • [47] The parameters of minimal linear codes
    Lu, Wei
    Wu, Xia
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 71
  • [48] ON MINIMAL WEIGHT OF BINARY GROUP CODES
    CALABI, L
    MYRVAAGNES, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (04) : 385 - +
  • [49] Weighty hierarchies of q-ary linear codes of dimension 3 and dimension 4
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2001, 21 (01):
  • [50] On the construction of Griesmer codes of dimension 5
    Yuuki Kageyama
    Tatsuya Maruta
    Designs, Codes and Cryptography, 2015, 75 : 277 - 280