Construction of minimal binary linear codes with dimension n+3

被引:0
|
作者
Shaikh, Wajid M. [1 ]
Jain, Rupali S. [1 ]
Reddy, B. Surendranath [1 ]
Patil, Bhagyashri S. [1 ]
机构
[1] SRTMU Nanded, Sch Computat Sci, Nanded, India
关键词
Linear code; Minimal code; Weight distribution; Ashikhmin-Barg condition;
D O I
10.1007/s12095-024-00768-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, for n >= 6, we present the generic construction of binary linear codes of length 2(n) - 1 with dimension n + 3, and derive the necessary and sufficient condition for the constructed codes to be minimal. Using this generic construction, a new family of minimal binary linear codes violating the Ashikhmin-Barg condition will be constructed from a special class of Boolean functions. We also obtain the weight distribution of the constructed minimal binary linear codes. We will achieve minimal codes with the highest dimension, resulting in a better rate of transmission.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 50 条
  • [21] Construction of binary linear codes via rational function fields
    Lingfei Jin
    Haibin Kan
    Designs, Codes and Cryptography, 2017, 83 : 633 - 638
  • [22] CONSTRUCTION OF SOME BINARY LINEAR CODES OF MINIMUM DISTANCE 5
    CHEN, CL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) : 1429 - 1432
  • [23] Construction of binary linear codes via rational function fields
    Jin, Lingfei
    Kan, Haibin
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (03) : 633 - 638
  • [24] Construction of binary and ternary self-orthogonal linear codes
    Kohnert, Axel
    Wassermann, Alfred
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (09) : 2118 - 2123
  • [25] Minimal binary linear codes: a general framework based on bent concatenation
    Fengrong Zhang
    Enes Pasalic
    René Rodríguez
    Yongzhuang Wei
    Designs, Codes and Cryptography, 2022, 90 : 1289 - 1318
  • [26] Minimal binary linear codes: a general framework based on bent concatenation
    Zhang, Fengrong
    Pasalic, Enes
    Rodriguez, Rene
    Wei, Yongzhuang
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (05) : 1289 - 1318
  • [27] Optimal binary codes and binary construction of quantum codes
    Weiliang Wang
    Yangyu Fan
    Ruihu Li
    Frontiers of Computer Science, 2014, 8 : 1024 - 1031
  • [28] Optimal binary codes and binary construction of quantum codes
    Wang, Weiliang
    Fan, Yangyu
    Li, Ruihu
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 1024 - 1031
  • [29] Constructions of Optimal Binary Locally Recoverable Codes via a General Construction of Linear Codes
    Luo, Gaojun
    Cao, Xiwang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 4987 - 4997
  • [30] On the second greedy weight for linear codes of dimension 3
    Chen, WD
    Klove, T
    DISCRETE MATHEMATICS, 2001, 241 (1-3) : 171 - 187