Construction of minimal binary linear codes with dimension n+3

被引:0
|
作者
Shaikh, Wajid M. [1 ]
Jain, Rupali S. [1 ]
Reddy, B. Surendranath [1 ]
Patil, Bhagyashri S. [1 ]
机构
[1] SRTMU Nanded, Sch Computat Sci, Nanded, India
关键词
Linear code; Minimal code; Weight distribution; Ashikhmin-Barg condition;
D O I
10.1007/s12095-024-00768-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, for n >= 6, we present the generic construction of binary linear codes of length 2(n) - 1 with dimension n + 3, and derive the necessary and sufficient condition for the constructed codes to be minimal. Using this generic construction, a new family of minimal binary linear codes violating the Ashikhmin-Barg condition will be constructed from a special class of Boolean functions. We also obtain the weight distribution of the constructed minimal binary linear codes. We will achieve minimal codes with the highest dimension, resulting in a better rate of transmission.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 50 条
  • [1] Construction of minimal binary linear codes with dimension n+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+3$$\end{document}
    Wajid M. Shaikh
    Rupali S. Jain
    B. Surendranath Reddy
    Bhagyashri S. Patil
    Cryptography and Communications, 2025, 17 (2) : 433 - 452
  • [2] Construction of Two Classes of Minimal Binary Linear Codes
    Du Xiaoni
    Hu Jinxi
    Jin Wengan
    Sun Yanzhong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3643 - 3649
  • [3] Minimal Binary Linear Codes
    Ding, Cunsheng
    Heng, Ziling
    Zhou, Zhengchun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6536 - 6545
  • [4] Construction of Two Classes of Minimal Binary Linear Codes from Definition Sets
    Wu, Hao
    Du, Xiaoni
    Qiao, Xingbin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (12) : 1470 - 1474
  • [5] Construction of Two Classes of Minimal Binary Linear Codes Based on Boolean Function
    Du, Jiawei
    Du, Xiaoni
    Jin, Wengang
    Zhang, Yingzhong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (04) : 689 - 693
  • [6] Construction of A Class of Minimal Linear Codes
    Wang, Tianxin
    Du, Xiaoni
    Jin, Wengang
    Sun, Yanzhong
    2022 10TH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2022, : 68 - 72
  • [7] ON THE CONSTRUCTION OF OPTIMAL LINEAR CODES OF DIMENSION FOUR
    Kato, Atsuya
    Maruta, Tatsuya
    Nomura, Keita
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1237 - 1252
  • [8] NEW BOUNDS ON BINARY LINEAR CODES OF DIMENSION 8
    DODUNEKOV, SM
    HELLESETH, T
    MANEV, N
    YTREHUS, O
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) : 917 - 919
  • [9] Weight hierarchies of binary linear codes of dimension 4
    Chen, W
    Klove, T
    DISCRETE MATHEMATICS, 2001, 238 (1-3) : 27 - 34
  • [10] Optimal binary linear codes of dimension at most seven
    Bouyukliev, I
    Jaffe, DB
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 51 - 70