A Globally Interpretable Convolutional Neural Network Combining Bearing Semantics for Bearing Fault Diagnosis

被引:0
|
作者
Wang, Zhen [1 ]
Han, Guangjie [2 ]
Liu, Li [3 ]
Wang, Feng
Zhu, Yuanyang [4 ]
机构
[1] Hohai Univ, Coll Artificial Intelligence & Automat, Changzhou 213200, Peoples R China
[2] Hohai Univ, Jiangsu Key Lab Power Transmiss & Distribut Equipm, Changzhou 213200, Peoples R China
[3] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214126, Peoples R China
[4] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing 211100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bearing fault diagnosis; bearing semantics; convolutional neural network (CNN); fault characteristic frequency (FCF); interpretability;
D O I
10.1109/TIM.2025.3538068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bearing fault diagnosis is crucial for maintaining the safety of industrial systems. With the massive data collected by the Industrial Internet-of-Things technology, deep learning (DL)-based end-to-end models have been extensively utilized in bearing fault diagnosis. However, their limited interpretability poses challenges to their reliability, hindering further advancements in the field. To address this interpretability issue, we propose a globally interpretable convolutional neural network (CNN) combining bearing semantics for bearing fault diagnosis. Specifically, the physical semantics of bearing signals are first constructed based on the fault characteristic frequency (FCF). Based on this bearing semantics, a novel bearing semantic embedding method is proposed to enhance the interpretability of convolutional layers. Moreover, a globally interpretable network (GINet) structure is crafted to ensure that the bearing semantics are visible throughout the entire network. Experimental results on two datasets demonstrate that the network's performance remains comparable to the benchmark method while achieving global interpretability. This network also exhibits improved noise robustness, proving the effectiveness of semantic embedding. In addition, since this network is an interpretable modification of the basic CNN, it is not limited to bearing fault diagnosis. Theoretically, with the appropriate semantics, it can also be applied to other signal-based fault diagnosis tasks.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A deep ensemble dense convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Zhao, Ke
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [42] Bearing Fault Diagnosis Based on Adaptive Convolutional Neural Network With Nesterov Momentum
    Gao, Shuzhi
    Pei, Zhiming
    Zhang, Yimin
    Li, Tianchi
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9268 - 9276
  • [43] Enhanced Lightweight Multiscale Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Zhu, Jing
    Liu, Yang
    Cheng, Qiang
    IEEE ACCESS, 2020, 8 (08): : 217723 - 217734
  • [44] A Multiscale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing
    Yin, Peizhe
    Nie, Jie
    Liang, Xinyue
    Yu, Shusong
    Wang, Chenglong
    Nie, Weizhi
    Ding, Xiangqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [45] Application of Convolutional Neural Network for Fault Diagnosis of Bearing Scratch of an Induction Motor
    Esaki Muthu Pandara Kone, Shrinathan
    Yatsugi, Kenichi
    Mizuno, Yukio
    Nakamura, Hisahide
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [46] Bearing Fault Identification and Classification with Convolutional Neural Network
    Bhadane, Mukesh
    Ramachandran, K. I.
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT ,POWER AND COMPUTING TECHNOLOGIES (ICCPCT), 2017,
  • [47] Interpretable Convolutional Neural Network for Mechanical Equipment Fault Diagnosis
    Chen, Qian
    Chen, Kangkang
    Dong, Xingjian
    Huangfu, Yifan
    Peng, Zhike
    Meng, Guang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (12): : 65 - 76
  • [48] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [49] Rolling bearing fault diagnosis using enhanced convolutional neural network with compressed sensing
    Liang, Tianchen
    Wang, Jiayao
    Wang, Haoyu
    Wu, Shuaipeng
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 148 - 152
  • [50] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316