A Globally Interpretable Convolutional Neural Network Combining Bearing Semantics for Bearing Fault Diagnosis

被引:0
|
作者
Wang, Zhen [1 ]
Han, Guangjie [2 ]
Liu, Li [3 ]
Wang, Feng
Zhu, Yuanyang [4 ]
机构
[1] Hohai Univ, Coll Artificial Intelligence & Automat, Changzhou 213200, Peoples R China
[2] Hohai Univ, Jiangsu Key Lab Power Transmiss & Distribut Equipm, Changzhou 213200, Peoples R China
[3] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214126, Peoples R China
[4] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing 211100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bearing fault diagnosis; bearing semantics; convolutional neural network (CNN); fault characteristic frequency (FCF); interpretability;
D O I
10.1109/TIM.2025.3538068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bearing fault diagnosis is crucial for maintaining the safety of industrial systems. With the massive data collected by the Industrial Internet-of-Things technology, deep learning (DL)-based end-to-end models have been extensively utilized in bearing fault diagnosis. However, their limited interpretability poses challenges to their reliability, hindering further advancements in the field. To address this interpretability issue, we propose a globally interpretable convolutional neural network (CNN) combining bearing semantics for bearing fault diagnosis. Specifically, the physical semantics of bearing signals are first constructed based on the fault characteristic frequency (FCF). Based on this bearing semantics, a novel bearing semantic embedding method is proposed to enhance the interpretability of convolutional layers. Moreover, a globally interpretable network (GINet) structure is crafted to ensure that the bearing semantics are visible throughout the entire network. Experimental results on two datasets demonstrate that the network's performance remains comparable to the benchmark method while achieving global interpretability. This network also exhibits improved noise robustness, proving the effectiveness of semantic embedding. In addition, since this network is an interpretable modification of the basic CNN, it is not limited to bearing fault diagnosis. Theoretically, with the appropriate semantics, it can also be applied to other signal-based fault diagnosis tasks.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A lightweight dynamic dual-damped wavelet-based convolutional neural network for interpretable bearing fault diagnosis
    Zhao, Lijuan
    Mao, Yongfang
    Qin, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [22] A reinforcement neural architecture search convolutional neural network for rolling bearing fault diagnosis
    Li, Lintao
    Jiang, Hongkai
    Wang, Ruixin
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [23] A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
    Zhu, Zhiyu
    Peng, Gaoliang
    Chen, Yuanhang
    Gao, Huijun
    NEUROCOMPUTING, 2019, 323 : 62 - 75
  • [24] A Novel Local Binary Temporal Convolutional Neural Network for Bearing Fault Diagnosis
    Xue, Yihao
    Yang, Rui
    Chen, Xiaohan
    Tian, Zhongbei
    Wang, Zidong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Rolling Bearing Real Time Fault Diagnosis Using Convolutional Neural Network
    Zhou, Funa
    Zhou, Wei
    Chen, Danmin
    Wen, Chenglin
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 377 - 382
  • [26] Bearing Fault Diagnosis Using One-Dimensional Convolutional Neural Network
    Gao, Zhanyuan
    Wei, Zhennan
    Chen, Yuan
    Ying, Tianqi
    Gao, Haojie
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 158 - 162
  • [27] Multitask Convolutional Neural Network With Information Fusion for Bearing Fault Diagnosis and Localization
    Guo, Sheng
    Zhang, Bin
    Yang, Tao
    Lyu, Dongzhen
    Gao, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (09) : 8005 - 8015
  • [28] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020
  • [29] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [30] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192