A reconstruction technique for high-order variational finite volume schemes based on conjugate gradient method

被引:0
|
作者
Ni, Fangkun [1 ,2 ]
Pan, Jianhua [1 ,2 ]
Zeng, Wei-Gang [3 ]
Ren, Yu-Xin [4 ]
机构
[1] Ningbo Univ, Zhejiang Prov Engn Res Ctr Safety Pressure Vessel, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Key Lab Impact & Safety Engn, Minist Educ, Ningbo 315211, Peoples R China
[3] Northeast Normal Univ, Acad Adv Interdisciplinary Studies, Changchun 130024, Peoples R China
[4] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Conjugate gradient method; Variational finite volume method; Unstructured grids; High-order method; UNSTRUCTURED GRIDS II; SPECTRAL DIFFERENCE METHOD; CONSERVATION-LAWS; ELEMENT-METHOD; EXTENSION; SYSTEMS; FLOWS;
D O I
10.1016/j.compfluid.2025.106576
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a novel reconstruction technique based on conjugate gradient method for the variational finite volume schemes. Compared with the Gauss-Seidel or Jacobi iteration based variational finite volume schemes, the conjugate gradient method based variational finite volume schemes not only have a superior convergence rate but also are cell-wise parallel and suit for computational devices like graphic processing units. Benchmark cases including 2-D and 3-D, steady and unsteady, inviscid and viscous cases demonstrate the effectiveness and high efficiency of the proposed technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes
    Tam, CKW
    Kurbatskii, KA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) : 588 - 617
  • [32] A family of efficient high-order hybrid finite difference schemes based on WENO schemes
    Zhou, Qiang
    He, Feng
    Shen, M. Y.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (04) : 205 - 229
  • [33] Moving Kriging reconstruction for high-order finite volume computation of compressible flows
    Chassaing, Jean-Camille
    Nogueira, Xesus
    Khelladi, Sofiane
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 463 - 478
  • [34] Comparison between a priori and a posteriori slope limiters for high-order finite volume schemes
    Palafoutas, Jonathan
    Romero, David A. Velasco
    Teyssier, Romain
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 522
  • [35] High-order finite volume WENO schemes for Boussinesq modelling of nearshore wave processes
    Zhou, Quan
    Zhan, Jiemin
    Li, Yoksheung
    JOURNAL OF HYDRAULIC RESEARCH, 2016, 54 (06) : 646 - 662
  • [36] High-order well-balanced finite volume schemes for the Euler equations with gravitation
    Grosheintz-Laval, L.
    Kappeli, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 324 - 343
  • [37] FINITE-VOLUME IMPLEMENTATION OF HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES IN 2 DIMENSIONS
    CASPER, J
    AIAA JOURNAL, 1992, 30 (12) : 2829 - 2835
  • [38] Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions
    Casper, Jay, 1600, Publ by AIAA, Washington, DC, United States (30):
  • [39] Cost-efficient finite-volume high-order schemes for compressible magnetohydrodynamics
    Teissier, Jean-Mathieu
    Maeusle, Raquel
    Mueller, Wolf-Christian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 515
  • [40] Modelling pom-pom type models with high-order finite volume schemes
    Aboubacar, M
    Aguayo, JP
    Phillips, PM
    Phillips, TN
    Tamaddon-Jahromi, HR
    Snigerev, BA
    Webster, MF
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2005, 126 (2-3) : 207 - 220