A reconstruction technique for high-order variational finite volume schemes based on conjugate gradient method

被引:0
|
作者
Ni, Fangkun [1 ,2 ]
Pan, Jianhua [1 ,2 ]
Zeng, Wei-Gang [3 ]
Ren, Yu-Xin [4 ]
机构
[1] Ningbo Univ, Zhejiang Prov Engn Res Ctr Safety Pressure Vessel, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Key Lab Impact & Safety Engn, Minist Educ, Ningbo 315211, Peoples R China
[3] Northeast Normal Univ, Acad Adv Interdisciplinary Studies, Changchun 130024, Peoples R China
[4] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Conjugate gradient method; Variational finite volume method; Unstructured grids; High-order method; UNSTRUCTURED GRIDS II; SPECTRAL DIFFERENCE METHOD; CONSERVATION-LAWS; ELEMENT-METHOD; EXTENSION; SYSTEMS; FLOWS;
D O I
10.1016/j.compfluid.2025.106576
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a novel reconstruction technique based on conjugate gradient method for the variational finite volume schemes. Compared with the Gauss-Seidel or Jacobi iteration based variational finite volume schemes, the conjugate gradient method based variational finite volume schemes not only have a superior convergence rate but also are cell-wise parallel and suit for computational devices like graphic processing units. Benchmark cases including 2-D and 3-D, steady and unsteady, inviscid and viscous cases demonstrate the effectiveness and high efficiency of the proposed technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] High-order upwind finite volume element schemes for modelling of neuronal firing
    Wang, Quanxiang
    Zhang, Zhiyue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) : 625 - 640
  • [22] On the properties of high-order least-squares finite-volume schemes
    Saez-Mischlich, G.
    Sierra-Ausin, J.
    Grondin, G.
    Gressier, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 457
  • [23] The influence of global-direction stencil on gradient and high-order derivatives reconstruction of unstructured finite volume methods
    Kong L.
    Dong Y.
    Liu W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (05): : 1334 - 1349
  • [25] High-order finite difference and finite volume WENO schemes and discontinuous galerkin methods for CFD
    Shu, CW
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (02) : 107 - 118
  • [26] High-order variational Lagrangian schemes for compressible fluids
    Fu, Guosheng
    Liu, Chun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [27] STOPPING CRITERIA FOR THE CONJUGATE GRADIENT ALGORITHM IN HIGH-ORDER FINITE ELEMENT METHODS\ast
    Guo, Yichen
    DE Sturler, Eric
    Warburton, Tim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (01): : A238 - A267
  • [28] Arbitrary high-order finite element schemes and high-order mass lumping
    Jund, Sebastien
    Salmon, Stephanie
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 375 - 393
  • [29] Eigensolution analysis of immersed boundary method based on volume penalization: Applications to high-order schemes
    Kou, Jiaqing
    Hurtado-de-Mendoza, Aurelio
    Joshi, Saumitra
    Le Clainche, Soledad
    Ferrer, Esteban
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [30] Application of high-order spatial resolution schemes to the hybrid finite volume/finite element method for radiative transfer in participating media
    Coelho, P. J.
    Aelenei, D.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2008, 18 (02) : 173 - 184