Positivity and uniqueness of solutions for Riemann-Liouville fractional problem of delta types

被引:0
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ]
Mohammed, Pshtiwan Othman [4 ]
Baleanu, Dumitru [5 ,6 ]
Yousif, Majeed A.
Ibrahim, Ibrahim S. [7 ]
Abdelwahed, Mohamed [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[3] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[4] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah 46001, Iraq
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[6] Inst Space Sci Subsidiary INFLPR, R-76900 Magurele, Romania
[7] Univ Zakho, Coll Educ, Dept Math, Zakho 42002, Iraq
[8] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Riemann-Liouville operators; Green's functions; Fixed point theorem; Existence and uniqueness solution; STABILITY ANALYSIS; NEURAL-NETWORKS; EXISTENCE; OPERATORS;
D O I
10.1016/j.aej.2024.11.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we explore multi positive solutions together with their existence and uniqueness, which is properly defined for delta fractional version of Riemann-Liouville difference operators. Our exploration encompasses two distinct directions. In the first direction, we construct the Green's function formula for the proposed delta fractional boundary value problems of order S is an element of (1, 2), and we present some essential properties of this function. The last and main results suggest using the well-known fixed point theorems in a Banach space for testing the existing and uniqueness of multi-positive solutions of such problems.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [41] Existence and uniqueness of mild solutions for mixed Caputo and Riemann-Liouville semilinear fractional integrodifferential equations with nonlocal conditions
    Radwan, Ashraf H. A.
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2959 - 2976
  • [42] ON A PROBLEM FOR MIXED TYPE EQUATION WITH PARTIAL RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Repin, O. A.
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (04): : 636 - 643
  • [43] Positive solutions for a fractional configuration of the Riemann-Liouville semilinear differential equation
    Azzaoui, Bouchra
    Tellab, Brahim
    Zennir, Khaled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [44] Some Properties for Solutions of Riemann-Liouville Fractional Differential Systems with a Delay
    Zhao, Jing
    Meng, Fanwei
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [45] On asymptotics of solutions for superdiffusion and subdiffusion equations with the Riemann-Liouville fractional derivative
    Li, Zhiqiang
    Fan, Yanzhe
    AIMS MATHEMATICS, 2023, 8 (08): : 19210 - 19239
  • [46] On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative
    Khan, Zareen A.
    Gul, Rozi
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [47] The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative
    Zhou, Yong
    Wang, Jing Na
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2431 - 2438
  • [48] EXACT SOLUTIONS OF LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES
    Agarwal, Ravi P.
    Hristova, Snezhana
    O'Regan, Donal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 779 - 791
  • [49] On a periodic problem for Riemann-Liouville fractional semilinear functional evolution inclusions
    Benyoub, Mohammed
    Donchev, Tzanko
    Kitanov, Nikolay
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (10)
  • [50] Positive solutions for some Riemann-Liouville fractional boundary value problems
    Bachar, Imed
    Maagli, Habib
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (07): : 5093 - 5106