Positivity and uniqueness of solutions for Riemann-Liouville fractional problem of delta types

被引:0
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ]
Mohammed, Pshtiwan Othman [4 ]
Baleanu, Dumitru [5 ,6 ]
Yousif, Majeed A.
Ibrahim, Ibrahim S. [7 ]
Abdelwahed, Mohamed [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[3] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[4] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah 46001, Iraq
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[6] Inst Space Sci Subsidiary INFLPR, R-76900 Magurele, Romania
[7] Univ Zakho, Coll Educ, Dept Math, Zakho 42002, Iraq
[8] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Riemann-Liouville operators; Green's functions; Fixed point theorem; Existence and uniqueness solution; STABILITY ANALYSIS; NEURAL-NETWORKS; EXISTENCE; OPERATORS;
D O I
10.1016/j.aej.2024.11.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we explore multi positive solutions together with their existence and uniqueness, which is properly defined for delta fractional version of Riemann-Liouville difference operators. Our exploration encompasses two distinct directions. In the first direction, we construct the Green's function formula for the proposed delta fractional boundary value problems of order S is an element of (1, 2), and we present some essential properties of this function. The last and main results suggest using the well-known fixed point theorems in a Banach space for testing the existing and uniqueness of multi-positive solutions of such problems.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [31] On a backward problem for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Nguyen Hoang Tuan
    Baleanu, Dumitru
    Tran Ngoc Thach
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1292 - 1312
  • [32] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [33] Existence and Uniqueness of Uncertain Fractional Backward Difference Equations of Riemann-Liouville Type
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Jarad, Fahd
    Chu, Yu-Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [34] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [35] RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS
    Mei, Zhan-Dong
    Peng, Ji-Gen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [36] REGULARITY OF MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Li, Ya-Ning
    Sun, Hong-Rui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [37] EXISTENCE OF OPTIMAL SOLUTIONS TO LAGRANGE PROBLEM FOR A FRACTIONAL NONLINEAR CONTROL SYSTEM WITH RIEMANN-LIOUVILLE DERIVATIVE
    Idczak, Dariusz
    Kamocki, Rafal
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) : 449 - 464
  • [38] THREE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATION WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Shen, Chunfang
    Zhou, Hui
    Yang, Liu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1227 - 1238
  • [39] Nontrivial Solutions for a Higher Order Nonlinear Fractional Boundary Value Problem Involving Riemann-Liouville Fractional Derivatives
    Zhang, Keyu
    O'Regan, Donal
    Xu, Jiafa
    Fu, Zhengqing
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [40] Results on Existence and Uniqueness of solutions of Fractional Differential Equations of Caputo-Fabrizio type in the sense of Riemann-Liouville
    Igobi, Dodi
    Udogworen, Wisdom
    IAENG International Journal of Applied Mathematics, 2024, 54 (06) : 1163 - 1171