Fast-charging lithium-ion batteries: Synergy of carbon nanotubes and laser ablation

被引:0
|
作者
Vennam, Geetika [1 ]
Singh, Avtar [2 ]
Dunlop, Alison R. [3 ]
Islam, Saiful [1 ]
Weddle, Peter J. [2 ]
Mak, Bianca Yi Wen [1 ]
Tancin, Ryan [2 ]
Evans, Michael C. [1 ]
Trask, Stephen E. [3 ]
Dufek, Eric J. [1 ]
Colclasure, Andrew M. [2 ]
Finegan, Donal P. [2 ]
Smith, Kandler [2 ]
Jansen, Andrew N. [3 ]
Gering, Kevin L. [1 ]
Yang, Zhenzhen [3 ]
Tanim, Tanvir R. [1 ]
机构
[1] Idaho Natl Lab, Energy Storage Res & Anal Dept, Idaho Falls, ID 83415 USA
[2] Natl Renewable Energy Lab, Energy Convers & Storage Syst Ctr, Golden, CO 80401 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
Lithium plating; Fast-charging; Lithium-ion batteries; Laser ablation; Single-wall carbon nano tubes; ESTER COSOLVENTS; CELLS; ELECTRODES;
D O I
10.1016/j.jpowsour.2025.236566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advancing lithium-ion battery (LiB) technology to achieve 10-15-min extreme fast charging (XFC) while maintaining high energy density and longevity poses a significant challenge. Addressing Li-plating is crucial, as it depletes useable Li, causing deterioration and safety issues. This study explores a holistic approach incorporating Single-Wall Carbon Nanotubes (SWCNTs) and Laser Ablation (LA) to mitigate Li-plating while maintaining high charge acceptance under 10-15-min XFC. SWCNTs enhance the electrical conductivity and mechanical integrity of the positive electrode (PE), reducing overall cell overpotential at high charging rates. Concurrently, LA is applied to negative electrodes (NE) to reduce tortuosity of ion-diffusion pathways and increase surface wettability, improving Li-ion transport. Combining SWCNTs in the PE and LA on the NE, our experimental findings demonstrate a significant reduction in Li-plating and maintained high charge acceptance of similar to 84.33 % after 800 5C (12 min) charge cycles for cells having PE with similar to 3.3 mAh cm(-2) and NE with 3.9 mAh cm(-2) loadings. This study highlights the potential of combining SWCNTs and LA to address Li-plating in LiBs and opens new avenues for designing battery systems capable of achieving 10-15-min XFC.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [32] Advanced Integrated Fast-Charging Protocol for Lithium-Ion Batteries by Considering Degradation
    Kim, Minsu
    Kim, Junghwan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6786 - 6796
  • [33] Conductive TiN network-assisted fast-charging of lithium-ion batteries
    Jeong, Won Ung
    Shin, Hong Rim
    Choi, Ilyoung
    Jeong, Jae Seok
    Suh, Joo Hyeong
    Kim, Dong Ki
    Kim, Youngugk
    Lee, Jong-Won
    Park, Min-Sik
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (03) : 2084 - 2092
  • [34] Electrode and Electrolyte Design Strategies Toward Fast-Charging Lithium-Ion Batteries
    Li, Jianwei
    Guo, Changyuan
    Tao, Lijuan
    Meng, Jiashen
    Xu, Xiaoming
    Liu, Fang
    Wang, Xuanpeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [35] Design of Localized High Concentration Electrolytes for Fast-Charging Lithium-Ion Batteries
    Ober, Seamus
    Manthiram, Arumugam
    SMALL, 2024, 20 (47)
  • [36] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Zeng, Qinghui
    Dong, Yongteng
    Chen, Yuanmao
    Yue, Xinyang
    Liang, Zheng
    SCIENCE CHINA-CHEMISTRY, 2024, : 3952 - 3963
  • [37] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Qinghui Zeng
    Yongteng Dong
    Yuanmao Chen
    Xinyang Yue
    Zheng Liang
    Science China(Chemistry), 2024, 67 (12) : 3952 - 3963
  • [38] Optimization of fast-charging strategy for LISHEN 4695 cylindrical lithium-ion batteries
    Hong, Shu
    Ma, Dongwei
    Zeng, Weijia
    Shi, Jintao
    Liu, Yingbo
    Yang, Liping
    Fan, Yaqi
    Liu, Yulu
    Yang, Chenglin
    Hong, Bo
    JOURNAL OF POWER SOURCES, 2025, 629
  • [39] Unveiling the influences of electrolyte additives on the fast-charging performance of lithium-ion batteries
    Schmidt, Rachel
    Liu, Chen
    Cui, Zehao
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2025, 627
  • [40] Cell Architecture Design for Fast-Charging Lithium-Ion Batteries in Electric Vehicles
    Yeganehdoust, Firoozeh
    Reddy, Anil Kumar Madikere Raghunatha
    Zaghib, Karim
    BATTERIES-BASEL, 2025, 11 (01):