Optimization of fast-charging strategy for LISHEN 4695 cylindrical lithium-ion batteries

被引:0
|
作者
Hong, Shu [1 ]
Ma, Dongwei [1 ]
Zeng, Weijia [1 ]
Shi, Jintao [1 ]
Liu, Yingbo [1 ]
Yang, Liping [1 ]
Fan, Yaqi [1 ]
Liu, Yulu [1 ]
Yang, Chenglin [1 ]
Hong, Bo [2 ]
机构
[1] Tianjin Lishen Battery Joint Stock Co Ltd, Tianjin 300000, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
Large-format lithium-ion battery; 4695 large cylindrical batteries; High energy density; Fast-charging technology; Electrochemical performance; PERFORMANCE; CELLS; ELECTROLYTE; CYCLE;
D O I
10.1016/j.jpowsour.2024.236013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing fast-charging technology for lithium-ion batteries with high energy density remains a significant and unresolved challenge. Fortunately, the advent of the 46 series large cylindrical batteries featuring an innovative "tabless" design has considerably enhanced the fast-charging capabilities of lithium-ion batteries. This study presents an 18-min fast-charging technology for 4695 large cylindrical batteries, which exhibit an impressive energy density exceeding 280 Wh kg-1 and can endure over 1200 cycles. This capability equates to a driving range of more than 600,000 km, and each charge is a fast one. Through the utilization of charge-discharge tests, three-electrode analysis, and thermodynamic simulations, critical parameters are meticulously evaluated, including the lithium plating boundary based on 10 mV standard lithium plating potential, an optimal operating temperature of 25 degrees C, an appropriate electrolyte injection coefficient of 1.45 g/Ah, and a suitable quick-charge type of 4C-9steps. Additionally, both destructive and non-destructive analyses of fresh and cycled cells reveal that the degradation of anode materials is the primary factor causing the observed performance degradation. The above optimization of fast charging strategy and failure behavior analysis based on 4695 large cylindrical batteries provide significant insights and have crucial implications for the expedited commercialization of 46 series large-format cylindrical batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Inorganic lithium-ion conductors for fast-charging lithium batteries: a review
    Xue, Ning
    Zhang, Chang
    Liu, Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [2] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yi Yang
    XiaLin Zhong
    Lei Xu
    ZhuoLin Yang
    Chong Yan
    JiaQi Huang
    Journal of Energy Chemistry, 2024, 97 (10) : 453 - 459
  • [3] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [4] Research progress on electrolytes for fast-charging lithium-ion batteries
    Dan Zhang
    Le Li
    Weizhuo Zhang
    Minghui Cao
    Hengwei Qiu
    Xiaohui Ji
    Chinese Chemical Letters, 2023, 34 (01) : 114 - 120
  • [5] Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives
    Zhao, Jingteng
    Song, Congying
    Li, Guoxing
    CHEMPLUSCHEM, 2022, 87 (07):
  • [6] Electrolyte Design Strategies for Fast-Charging Lithium-Ion Batteries
    Chen, Ying
    Qin, Jiahe
    Gao, Zhifeng
    Sha, Junhui
    Chen, Taiqiang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (07): : 1027 - 1040
  • [7] Challenges and opportunities toward fast-charging of lithium-ion batteries
    Xie, Wenlong
    Liu, Xinhua
    He, Rong
    Li, Yalun
    Gao, Xinlei
    Li, Xinghu
    Peng, Zhaoxia
    Feng, Suwei
    Feng, Xuning
    Yang, Shichun
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [8] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [9] Research progress on electrolytes for fast-charging lithium-ion batteries
    Zhang, Dan
    Li, Le
    Zhang, Weizhuo
    Cao, Minghui
    Qiu, Hengwei
    Ji, Xiaohui
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [10] Porous current collector for fast-charging lithium-ion batteries
    Cui, Yi
    Ye, Yusheng
    NATURE ENERGY, 2024, 9 (06): : 639 - 640