A noncoforming virtual element approximation for the Oseen eigenvalue problem

被引:0
|
作者
Adak, Dibyendu [1 ]
Lepe, Felipe [1 ]
Rivera, Gonzalo [2 ]
机构
[1] Univ Bio Bio, Dept Matemat, GIMNAP, Casilla 5-C, Concepcion 4051145, Chile
[2] Univ Los Lagos, Dept Ciencias Exactas, Osorno 5212239, Chile
关键词
Oseen equations; eigenvalue problems; virtual element method; MIXED FINITE-ELEMENTS; PSEUDOSTRESS FORMULATION; STOKES;
D O I
10.1093/imanum/drae108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a nonconforming virtual element method to approximate the eigenfunctions and eigenvalues of the two dimensional Oseen eigenvalue problem. The spaces under consideration lead to a divergence-free method that is capable to capture properly the divergence at discrete level and the eigenvalues and eigenfunctions. Under the compact theory for operators, we prove convergence and error estimates for the method. By employing the theory of compact operators, we recover the double order of convergence of the spectrum. Finally, we present numerical tests to assess the performance of the proposed numerical scheme.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Analysis and finite element approximation of an optimal control problem for the Oseen viscoelastic fluid flow
    Lee, Hyung-Chun
    Lee, Hyesuk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1090 - 1106
  • [22] A virtual element method for the Laplacian eigenvalue problem in mixed form
    Meng, Jian
    Zhang, Yongchao
    Mei, Liquan
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 1 - 13
  • [23] Nonconforming virtual element method for the Schrödinger eigenvalue problem
    Adak, Dibyendu
    Manzini, Gianmarco
    Vellojin, Jesus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 213 - 235
  • [24] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Yang Li
    Minfu Feng
    Yan Luo
    Advances in Computational Mathematics, 2022, 48
  • [25] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Li, Yang
    Feng, Minfu
    Luo, Yan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (03)
  • [26] Spectral Element Approximation for the Eigenvalue Problem of Hydrogen Atoms Electronic Structure
    Han, Jiayu
    Yang, Yidu
    MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 3199 - 3202
  • [27] Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks
    Belhachmi, Zakaria
    Bucur, Dorin
    Sac-Epee, Jean-Marc
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) : 790 - 810
  • [28] The Influence of Variational Crimes on the Finite Element Approximation of a Maxwell Eigenvalue Problem
    Hamelinck, Wouter
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 249 - 252
  • [29] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [30] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190