An Edge-Based Smoothed Finite Element Method for Magnetic Field Analysis in Permanent Magnet Motors

被引:0
|
作者
Li, Xudong [1 ]
Yi, Feng [1 ]
Chen, Jinhua [1 ]
Ma, Haoran [2 ,3 ]
Chen, Zhenmao [4 ]
Zhang, Chi [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Key Lab Robot & Intelligent Mfg Equipment, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, CAS Key Lab Magnet Mat & Devices, Ningbo 315201, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Magnet Mat & Applicat Techno, Ningbo 315201, Peoples R China
[4] Xi An Jiao Tong Univ, Shaanxi Engn Res Ctr NDT & Struct Integr Evaluat, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element analysis; Magnetic domains; Magnetostatics; Accuracy; Vectors; Smoothing methods; Mathematical models; Edge-based smoothed finite element method (ES-FEM); Halbach array; magnetic field simulation; permanent magnet motors (PMMs);
D O I
10.1109/TMAG.2024.3416452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an edge-based smoothed finite element method (ES-FEM) aiming to enhance the accuracy of magnetic field simulations in permanent magnet motors (PMMs). ES-FEM constructs cross-mesh smooth domains while retaining the traditional finite element mesh. The global stiffness matrix is assembled based on the gradient fields associated with these smooth domains, providing an appropriate stiffness for obtaining more precise results. Utilizing the ES-FEM, this article formulates a smoothed Galerkin weak form for the magnetic field of permanent magnets. Numerical examples, employing a Halbach array, have been carried out. The results indicate that the ES-FEM demonstrates superior accuracy and cost-effectiveness compared to the traditional finite element method (FEM) with low-order triangular and quadrilateral elements. Moreover, the ES-FEM exhibits better tolerance to mesh distortion, thereby improving its utility in simulations of motor magnetic fields.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Analysis of the Magnetic Field of a Permanent Magnet Using the Finite Element Method.
    Skoczlas, Jerzy
    Archiwum ELektrotechniki, 1980, 29 (02): : 293 - 300
  • [22] Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
    Surendran, M.
    Pramod, A. L. N.
    Natarajan, S.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2019, 5 (03): : 540 - 551
  • [23] SIMULATION OF HYPERTHERMIA TREATMENT USING THE EDGE-BASED SMOOTHED FINITE-ELEMENT METHOD
    Li, Eric
    Liu, G. R.
    Tan, Vincent
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2010, 57 (11) : 822 - 847
  • [24] An edge-based smoothed finite element method for 3D analysis ofsolid mechanics problems
    Cazes, F.
    Meschke, G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (08) : 715 - 739
  • [25] Analysis of transient thermo-elastic problems using edge-based smoothed finite element method
    Feng, S. Z.
    Cui, X. Y.
    Li, G. Y.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 65 : 127 - 135
  • [26] Free Vibration Analysis of Functionally Graded Shells Using an Edge-Based Smoothed Finite Element Method
    Tien Dat Pham
    Quoc Hoa Pham
    Van Duc Phan
    Hoang Nam Nguyen
    Van Thom Do
    SYMMETRY-BASEL, 2019, 11 (05):
  • [27] Modeling fluid-structure interaction with the edge-based smoothed finite element method
    He, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
  • [28] An Edge-Based Smoothed Finite Element Method with TBC for the Elastic Wave Scattering by an Obstacle
    Wu, Ze
    Yue, Junhong
    Li, Ming
    Niu, Ruiping
    Zhang, Yufei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (03) : 709 - 748
  • [29] A mixed edge-based smoothed finite element method (MES-FEM) for elasticity
    Leonetti, Leonardo
    Garcea, Giovanni
    Nguyen-Xuan, H.
    COMPUTERS & STRUCTURES, 2016, 173 : 123 - 138
  • [30] An edge-based smoothed finite element method for wave scattering by an obstacle in elastic media
    Yue, Junhong
    Liu, G. R.
    Li, Ming
    Niu, Ruiping
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 101 : 121 - 138