Facial Expression Parameters Extraction using Graph Convolution Networks

被引:0
|
作者
Lee, Hyeong-Geun [1 ]
Hur, Jee-Sic [1 ]
Kim, Jin-Woong [1 ]
Kim, Do-Hyeun [1 ]
Kim, Soo-Kyun [1 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju, South Korea
基金
新加坡国家研究基金会;
关键词
Graph Convolution Network; Blendshapes; 3D Facial Animation; Facial Action Cooding System;
D O I
10.1109/ICUFN61752.2024.10624931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses a deep learning framework for the extraction of Facial Action Coding System coefficients from 3D facial models. To optimize the labor-intensive process associated with facial animation using traditional Blendshapes, this framework employs a Graph Convolution Network to extract feature vectors from 3D facial models, and accurately infers expression coefficients based on the Facial Action Coding System.
引用
收藏
页码:88 / 90
页数:3
相关论文
共 50 条
  • [31] Graph convolution networks for social media trolls detection use deep feature extraction
    Muhammad Asif
    Muna Al-Razgan
    Yasser A. Ali
    Long Yunrong
    Journal of Cloud Computing, 13
  • [32] Graph convolution networks for social media trolls detection use deep feature extraction
    Asif, Muhammad
    Al-Razgan, Muna
    Ali, Yasser A.
    Yunrong, Long
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2024, 13 (01):
  • [33] Residual Hyperbolic Graph Convolution Networks
    Xue, Yangkai
    Dai, Jindou
    Lu, Zhipeng
    Wu, Yuwei
    Jia, Yunde
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16247 - 16254
  • [34] Graph Convolution Networks for Cell Segmentation
    Bahade, Sachin
    Edwards, Michael
    Xie, Xianghua
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 620 - 627
  • [35] Efficient and Effective Graph Convolution Networks
    Liu, Siwu
    Park, Ji Hwan
    Yoo, Shinjae
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 388 - 396
  • [36] Facial expression recognition using the spectral graph wavelet
    Meena, Hemant Kumar
    Sharma, Kamalesh Kumar
    Joshi, Shiv Dutt
    IET SIGNAL PROCESSING, 2019, 13 (02) : 224 - 229
  • [37] Facial Expression Recognition Using Local Gravitational Force Descriptor-Based Deep Convolution Neural Networks
    Mohan, Karnati
    Seal, Ayan
    Krejcar, Ondrej
    Yazidi, Anis
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [38] Facial expression recognition using model-based feature extraction and action parameters classification
    Huang, CL
    Huang, YM
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1997, 8 (03) : 278 - 290
  • [39] A Hybrid Classification Approach using Topic Modeling and Graph Convolution Networks
    Singh, Thoudam Doren
    Divyansha
    Singh, Apoorva Vikram
    Khilji, Abdullah Faiz Ur Rahman
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 285 - 289
  • [40] Balanced Team Formation Using Hybrid Graph Convolution Networks and MILP
    Sharaf, Mohamed A.
    Alghamdi, Turki G.
    APPLIED SCIENCES-BASEL, 2025, 15 (04):