Graph convolution networks for social media trolls detection use deep feature extraction

被引:7
|
作者
Asif, Muhammad [1 ]
Al-Razgan, Muna [2 ]
Ali, Yasser A. [3 ]
Yunrong, Long [1 ]
机构
[1] Hunan Univ Sci & Engn, Sch Media, Yongzhou 425199, Hunan, Peoples R China
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Software Engn, POB 22452, Riyadh 11495, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 51178, Riyadh 11543, Saudi Arabia
关键词
Data mining; Digital forensics; Machine learning; Social media; Toxic data; CLASSIFICATION;
D O I
10.1186/s13677-024-00600-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a novel approach to identifying trolls and toxic content on social media using deep learning. We developed a machine-learning model capable of detecting toxic images through their embedded text content. Our approach leverages GloVe word embeddings to enhance the model's predictive accuracy. We also utilized Graph Convolutional Networks (GCNs) to effectively analyze the intricate relationships inherent in social media data. The practical implications of our work are significant, despite some limitations in the model's performance. While the model accurately identifies toxic content more than half of the time, it struggles with precision, correctly identifying positive instances less than 50% of the time. Additionally, its ability to detect all positive cases (recall) is limited, capturing only 40% of them. The F1-score, which is a measure of the model's balance between precision and recall, stands at around 0.4, indicating a need for further refinement to enhance its effectiveness. This research offers a promising step towards more effective monitoring and moderation of toxic content on social platforms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Graph convolution networks for social media trolls detection use deep feature extraction
    Muhammad Asif
    Muna Al-Razgan
    Yasser A. Ali
    Long Yunrong
    Journal of Cloud Computing, 13
  • [2] Using deep learning to detect social media 'trolls'
    MacDermott, Aine
    Motylinski, Michal
    Iqbal, Farkhund
    Stamp, Kellyann
    Hussain, Mohammed
    Marrington, Andrew
    FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION, 2022, 43
  • [3] Rumor detection on social media using hierarchically aggregated feature via graph neural networks
    Xu, Shouzhi
    Liu, Xiaodi
    Ma, Kai
    Dong, Fangmin
    Riskhan, Basheer
    Xiang, Shunzhi
    Bing, Changsong
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3136 - 3149
  • [4] Rumor detection on social media using hierarchically aggregated feature via graph neural networks
    Shouzhi Xu
    Xiaodi Liu
    Kai Ma
    Fangmin Dong
    Basheer Riskhan
    Shunzhi Xiang
    Changsong Bing
    Applied Intelligence, 2023, 53 : 3136 - 3149
  • [5] Revisiting Deep Hyperspectral Feature Extraction Networks via Gradient Centralized Convolution
    Roy, Swalpa Kumar
    Kar, Purbayan
    Hong, Danfeng
    Wu, Xin
    Plaza, Antonio
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] A temporal graph framework for intelligence extraction in social media networks
    Chung, Wingyan
    Lai, Vincent S.
    INFORMATION & MANAGEMENT, 2023, 60 (04)
  • [7] Unsupervised Community Detection Algorithm Based on Graph Convolution Network and Social Media
    Zhou, Hua
    Zhang, Yusha
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [8] Extended Feature-Driven Graph Model for Social Media Networks
    Qasem, Ziyaad
    Hecking, Tobias
    Cabrera, Benjamin
    Jansen, Marc
    Hoppe, H. Ulrich
    NETWORK INTELLIGENCE MEETS USER CENTERED SOCIAL MEDIA NETWORKS, 2018, : 119 - 132
  • [9] Node-Feature Convolution for Graph Convolutional Networks
    Zhang, Li
    Song, Heda
    Aletras, Nikolaos
    Lu, Haiping
    Pattern Recognition, 2022, 128
  • [10] Node-Feature Convolution for Graph Convolutional Networks
    Zhang, Li
    Song, Heda
    Aletras, Nikolaos
    Lu, Haiping
    PATTERN RECOGNITION, 2022, 128