Rumor detection on social media using hierarchically aggregated feature via graph neural networks

被引:16
|
作者
Xu, Shouzhi [1 ]
Liu, Xiaodi [1 ]
Ma, Kai [1 ]
Dong, Fangmin [1 ]
Riskhan, Basheer [1 ]
Xiang, Shunzhi [1 ]
Bing, Changsong [1 ]
机构
[1] China Three Gorges Univ, Coll Comp & Informat Technol, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
Rumor detection; Graph neural networks; Hierarchical aggregation; Rumor propagation; MODEL; NEWS;
D O I
10.1007/s10489-022-03592-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the era of the Internet and big data, online social media platforms have been developing rapidly, which accelerate rumors circulation. Rumor detection on social media is a worldwide challenging task due to rumor's feature of high speed, fragmental information and extensive range. Most existing approaches identify rumors based on single-layered hybrid features like word features, sentiment features and user characteristics, or multimodal features like the combination of text features and image features. Some researchers adopted the hierarchical structure, but they neither used rumor propagation nor made full use of its retweet posts. In this paper, we propose a novel model for rumor detection based on Graph Neural Networks (GNN), named Hierarchically Aggregated Graph Neural Networks (HAGNN). This task focuses on capturing different granularities of high-level representations of text content and fusing the rumor propagation structure. It applies a Graph Convolutional Network (GCN) with a graph of rumor propagation to learn the text-granularity representations with the spreading of events. A GNN model with a document graph is employed to update aggregated features of both word and text granularity, it helps to form final representations of events to detect rumors. Experiments on two real-world datasets demonstrate the superiority of the proposed method over the baseline methods. Our model achieves the accuracy of 95.7% and 88.2% on the Weibo dataset Ma et al. 2017 and the CED dataset Song et al. IEEE Trans Knowl Data Eng 33(8):3035-3047, 2019 respectively.
引用
收藏
页码:3136 / 3149
页数:14
相关论文
共 50 条
  • [1] Rumor detection on social media using hierarchically aggregated feature via graph neural networks
    Shouzhi Xu
    Xiaodi Liu
    Kai Ma
    Fangmin Dong
    Basheer Riskhan
    Shunzhi Xiang
    Changsong Bing
    Applied Intelligence, 2023, 53 : 3136 - 3149
  • [2] Early Rumor Detection in Social Media Based on Graph Convolutional Networks
    Thota, Niteesh Reddy
    Sun, Xiaoyan
    Dai, Jun
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 516 - 522
  • [3] Dynamic Rumor Control in Social Networks Using Temporal Graph Neural Networks
    Manurung, Jonson
    Sihombing, Poltak
    Budiman, Mohammad Andri
    Sawaluddin
    2023 IEEE International Conference of Computer Science and Information Technology: The Role of Artificial Intelligence Technology in Human and Computer Interactions in the Industrial Era 5.0, ICOSNIKOM 2023, 2023,
  • [4] Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
    Bian, Tian
    Xiao, Xi
    Xu, Tingyang
    Zhao, Peilin
    Huang, Wenbing
    Rong, Yu
    Huang, Junzhou
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 549 - 556
  • [5] Dynamic graph convolutional networks with attention mechanism for rumor detection on social media
    Choi, Jiho
    Ko, Taewook
    Choi, Younhyuk
    Byun, Hyungho
    Kim, Chong-kwon
    PLOS ONE, 2021, 16 (08):
  • [6] DDGCN: Dual Dynamic Graph Convolutional Networks for Rumor Detection on Social Media
    Sun, Mengzhu
    Zhang, Xi
    Zheng, Jiaqi
    Ma, Guixiang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4611 - 4619
  • [7] Rumor Detection on Social Media with Out-In-Degree Graph Convolutional Networks
    Song, Shihui
    Huang, Yafan
    Lu, Hongwei
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2395 - 2400
  • [8] Hierarchical graph attention networks for multi-modal rumor detection on social media
    Xu, Fan
    Zeng, Lei
    Huang, Qi
    Yan, Keyu
    Wang, Mingwen
    Sheng, Victor S.
    NEUROCOMPUTING, 2024, 569
  • [9] Rumor Detection on Social Media via Fused Semantic Information and a Propagation Heterogeneous Graph
    Ke, Zunwang
    Li, Zhe
    Zhou, Chenzhi
    Sheng, Jiabao
    Silamu, Wushour
    Guo, Qinglang
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 14
  • [10] Event Detection in Social Media via Graph Neural Network
    Gao, Wang
    Fang, Yuan
    Li, Lin
    Tao, Xiaohui
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT I, 2021, 13080 : 370 - 384