Multi-Agent Reinforcement Learning Based Resource Allocation for Efficient Message Dissemination in C-V2X Networks

被引:0
|
作者
Liu, Bingyi [1 ,2 ]
Hao, Jingxiang [1 ]
Wang, Enshu [3 ]
Jia, Dongyao [4 ]
Han, Weizhen [1 ]
Wu, Libing [3 ]
Xiong, Shengwu [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci Artificial Intelligence, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China
[3] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
C-V2X; Resource Allocation; Multi-agent Reinforcement Learning; LTE-V;
D O I
10.1109/IWQoS61813.2024.10682924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to support diverse applications in intelligent transportation, intelligent connected vehicles (ICVs) need to send multiple types of messages, such as periodic messages and event-driven messages with different frame specifications. However, existing researches often concentrate on the transmission of single-message types, overlooking hybrid communication scenarios where multiple types of messages coexist, posing challenges in meeting the diverse transmission needs of different message types. To optimize the Quality of Service (QoS) in such scenarios, we take the perspective of ICVs and formulate their decision making as a multi-agent reinforcement learning problem. More specifically, we propose a cooperative individual rewards assisted multi-agent reinforcement learning (CIRA) framework. The transformer structure in CIRA is used to avoid mutual interference during the transmission of different vehicles. Besides, the introduction of individual rewards and the dual-layer architecture of CIRA contribute to providing ICVs with more forward-looking message dissemination scheme. Finally, we set up a simulator to create dynamic traffic scenarios reflecting different real-world conditions. We conduct extensive experiments to evaluate the proposed CIRA framework's performance. The results show that CIRA can significantly improve the packet reception rates and ensure low communication delays in various scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Joint Resource Allocation for UAV-Assisted V2X Communication With Mean Field Multi-Agent Reinforcement Learning
    Xu, Yue
    Zheng, Linjiang
    Wu, Xiao
    Tang, Yi
    Liu, Weining
    Sun, Dihua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 1209 - 1223
  • [42] Federated Reinforcement Learning for Resource Allocation in V2X Networks
    Xu, Kaidi
    Zhou, Shenglong
    Li, Geoffrey Ye
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2024, 18 (07) : 1210 - 1221
  • [43] A Novel Resource Allocation Approach to C-V2X based internet of vehicle networks with Stackelberg Game
    Luo, Chengcheng
    Yang, Xin
    Wang, Hongwei
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1029 - 1034
  • [44] Performance of Fuzzy Inference System for Adaptive Resource Allocation in C-V2X Networks
    Bayu, Teguh Indra
    Huang, Yung-Fa
    Chen, Jeang-Kuo
    ELECTRONICS, 2022, 11 (23)
  • [45] Deep reinforcement learning for autonomous SideLink radio resource management in platoon-based C-V2X networks: An overview
    Trabelsi, Nessrine
    Fourati, Lamia Chaari
    Jaafar, Wael
    COMPUTER NETWORKS, 2024, 255
  • [46] Efficient Communications for Multi-Agent Reinforcement Learning in Wireless Networks
    Lv, Zefang
    Du, Yousong
    Chen, Yifan
    Xiao, Liang
    Han, Shuai
    Ji, Xiangyang
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 583 - 588
  • [47] Collaborative Multi-Agent Deep Reinforcement Learning for Energy-Efficient Resource Allocation in Heterogeneous Mobile Edge Computing Networks
    Xiao, Yang
    Song, Yuqian
    Liu, Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6653 - 6668
  • [48] Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks
    Xue, Jianbin
    Wang, Luyao
    Yu, Qingda
    Mao, Peipei
    COMPUTER COMMUNICATIONS, 2025, 234
  • [49] Multi-Agent Deep Reinforcement Learning for Resource Allocation in the Multi-Objective HetNet
    Nie, Hongrui
    Li, Shaosheng
    Liu, Yong
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 116 - 121
  • [50] Multi-Agent Low-Bias Reinforcement Learning for Resource Allocation in UAV-Assisted Networks
    Zhou, Shiyang
    Cheng, Yufan
    Lei, Xia
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 1011 - 1016