Multi-Agent Reinforcement Learning Based Resource Allocation for Efficient Message Dissemination in C-V2X Networks

被引:0
|
作者
Liu, Bingyi [1 ,2 ]
Hao, Jingxiang [1 ]
Wang, Enshu [3 ]
Jia, Dongyao [4 ]
Han, Weizhen [1 ]
Wu, Libing [3 ]
Xiong, Shengwu [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci Artificial Intelligence, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China
[3] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
C-V2X; Resource Allocation; Multi-agent Reinforcement Learning; LTE-V;
D O I
10.1109/IWQoS61813.2024.10682924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to support diverse applications in intelligent transportation, intelligent connected vehicles (ICVs) need to send multiple types of messages, such as periodic messages and event-driven messages with different frame specifications. However, existing researches often concentrate on the transmission of single-message types, overlooking hybrid communication scenarios where multiple types of messages coexist, posing challenges in meeting the diverse transmission needs of different message types. To optimize the Quality of Service (QoS) in such scenarios, we take the perspective of ICVs and formulate their decision making as a multi-agent reinforcement learning problem. More specifically, we propose a cooperative individual rewards assisted multi-agent reinforcement learning (CIRA) framework. The transformer structure in CIRA is used to avoid mutual interference during the transmission of different vehicles. Besides, the introduction of individual rewards and the dual-layer architecture of CIRA contribute to providing ICVs with more forward-looking message dissemination scheme. Finally, we set up a simulator to create dynamic traffic scenarios reflecting different real-world conditions. We conduct extensive experiments to evaluate the proposed CIRA framework's performance. The results show that CIRA can significantly improve the packet reception rates and ensure low communication delays in various scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Joint computation offloading and resource allocation based on deep reinforcement learning in C-V2X edge computing
    Hou, Peng
    Jiang, Xiaohan
    Lu, Zhihui
    Li, Bo
    Wang, Zongshan
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22446 - 22466
  • [22] Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning
    Liu, Zhibin
    Deng, Yifei
    VEHICULAR COMMUNICATIONS, 2025, 53
  • [23] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [24] Multi-Agent Reinforcement Learning- Based Resource Management for V2X Communication
    Zhao, Nan
    Wang, Jiaye
    Jin, Bo
    Wang, Ru
    Wu, Minghu
    Liu, Yu
    Zheng, Lufeng
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2023, 14 (01)
  • [25] Federated Multi-Agent Deep Reinforcement Learning Approach for Resource Allocation in Platoon-Based NR-V2X
    Liu, Yiming
    Wang, Qiang
    Chen, Jiaao
    Zhang, Wenqi
    Sun, Chen
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [26] Spectrum-Energy-Efficient Mode Selection and Resource Allocation for Heterogeneous V2X Networks: A Federated Multi-Agent Deep Reinforcement Learning Approach
    Gui, Jinsong
    Lin, Liyan
    Deng, Xiaoheng
    Cai, Lin
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (03) : 2689 - 2704
  • [27] Multi-Agent Reinforcement Learning based Adaptive Parameter Optimization for Semi-Persistent Scheduling in C-V2X Mode 4
    Fan, Pengcheng
    Chen, Xinyu
    Zhao, Jing
    Lu, Ning
    Wang, Ping
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 143 - 149
  • [28] Reinforcement Learning Approach for Adaptive C-V2X Resource Management
    Bayu, Teguh Indra
    Huang, Yung-Fa
    Chen, Jeang-Kuo
    FUTURE INTERNET, 2023, 15 (10):
  • [29] Platoon Leader Selection, User Association and Resource Allocation on a C-V2X based highway: A Reinforcement Learning Approach
    Farzanullah, Mohammad
    Tho Le-Ngoc
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5396 - 5401
  • [30] Attentional Communication for Multi-Agent Distributed Resource Allocation in V2X Networks
    Hammami, Nessrine
    Nguyen, Kim Khoa
    Purmehdi, Hakimeh
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5653 - 5658