[3] Gazi Univ, Dept Math, TR-06500 Ankara, Turkiye
来源:
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS
|
2024年
/
73卷
/
03期
关键词:
Unit cotangent sphere bundle;
cotangent bundle;
Sasaki metric;
almost contact structure;
TANGENT;
MANIFOLDS;
CURVATURE;
METRICS;
D O I:
10.31801/cfsuasmas.1431646
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (N, g) be a Riemannian manifold, by using the musical isomorphisms (sic) and (sic) induced by g, we built a bridge between the geometry of the tangent bundle TN (resp. the unit tangent sphere bundle T1N) equipped with the Sasaki metric g(S) (resp. the induced Sasaki metric (g) over bar (S)) and that of the cotangent bundle T*N (resp. the unit cotangent sphere bundle T*N-1) endowed with the Sasaki metric g((S) over tilde) (resp. the induced Sasaki metric (g) over tilde ((S) over tilde)). Moreover, we prove that T*N-1 carries a contact metric structure and study some of its properties.
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka 5588585, JapanOsaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
Hashimoto, Kaname
Sakai, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, JapanOsaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan