NOTES ON THE GEOMETRY OF COTANGENT BUNDLE AND UNIT COTANGENT SPHERE BUNDLE

被引:0
|
作者
Kacimi, Bouazza [1 ]
Kadi, Fatima Zohra [2 ]
Ozkan, Mustafa [3 ]
机构
[1] Univ Mascara, Dept Math, Mascara 29000, Algeria
[2] Univ Mascara, Dept Math, Lab oratory Quantum Phys & Math Modeling LPQ3M, Mascara 29000, Algeria
[3] Gazi Univ, Dept Math, TR-06500 Ankara, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 03期
关键词
Unit cotangent sphere bundle; cotangent bundle; Sasaki metric; almost contact structure; TANGENT; MANIFOLDS; CURVATURE; METRICS;
D O I
10.31801/cfsuasmas.1431646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (N, g) be a Riemannian manifold, by using the musical isomorphisms (sic) and (sic) induced by g, we built a bridge between the geometry of the tangent bundle TN (resp. the unit tangent sphere bundle T1N) equipped with the Sasaki metric g(S) (resp. the induced Sasaki metric (g) over bar (S)) and that of the cotangent bundle T*N (resp. the unit cotangent sphere bundle T*N-1) endowed with the Sasaki metric g((S) over tilde) (resp. the induced Sasaki metric (g) over tilde ((S) over tilde)). Moreover, we prove that T*N-1 carries a contact metric structure and study some of its properties.
引用
收藏
页码:845 / 859
页数:15
相关论文
共 50 条