Sema3A relieves neuropathic pain by reducing eIF2α phosphorylation via suppressing PI3K/Akt/mTOR pathway

被引:0
|
作者
Hu, Tingting [1 ,3 ]
Pang, Miaoyi [1 ]
Sun, Qingyu [1 ]
Gou, Yu [4 ]
Liu, Jing [1 ]
Wang, Xiaotong [1 ]
Ma, Yiran [1 ]
Chen, Wen [1 ]
Wei, Chao [1 ]
Liu, Meng [1 ]
Ding, Yumeng [1 ]
Zhang, Yurui [1 ]
Liu, Dianxin [1 ]
Wu, Weihua [2 ]
Wang, Peipei [1 ]
Zhu, Hongwei [5 ]
Li, Qian [2 ]
Yang, Fei [1 ]
机构
[1] Capital Med Univ, Sch Basic Med Sci, Dept Neurobiol, Beijing 100069, Peoples R China
[2] Capital Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Beijing 100069, Peoples R China
[3] Tianjin Huanhu Hosp, Tianjin Neurosurg Inst, Tianjin Key Lab Cerebral Vasc & Neurodegenerat Dis, Tianjin 300222, Peoples R China
[4] Tianjin Univ, Tianjin Hosp, Dept Orthopaed Surg, Tianjin 300299, Peoples R China
[5] Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China
来源
JOURNAL OF PAIN | 2025年 / 30卷
基金
中国国家自然科学基金;
关键词
Neuropathic pain; Eukaryotic initiation factor 2 alpha; Semaphorin3A; Dorsal Root Ganglion; PERIPHERAL MONONEUROPATHY; RAT; HYPERALGESIA; TRANSLATION; NEUROPILIN; RECEPTOR; NEURONS;
D O I
10.1016/j.jpain.2025.105374
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Primary sensory neurons serve as a critical link between the peripheral nervous system (PNS) and the central nervous system (CNS). They represent the initial neural tissue responsible for transmitting sensations and pain. In case where peripheral nerves are injured, nerve fiber regeneration can lead to severe pain. Semaphorin3A (Sema3A), an axon guidance molecule that can be secreted by Schwann cells, has been shown to effectively inhibit the regeneration of embryonic and adult dorsal root ganglion (DRG). However, its role in neuropathic pain and the underlying mechanisms remain unexplored. This study employed a chronic constriction injury (CCI) model of neuropathic pain in mice. We observed that increased expression of Sema3A could alleviate both mechanical and heat nociceptive behaviors in model mice. By overexpressing Sema3A in ipsilateral DRG neurons via DRG injection, we found that the phosphorylation of the PI3K/Akt/mTOR signaling pathway and eukaryotic initiation factor 2 alpha (eIF2 alpha) was inhibited, thereby inhibiting pain. eIF2 alpha is a translation initiation factor and its phosphorylation can regulate global translation. The inhibition of eIF2 alpha phosphorylation through PKR and PERK inhibitors also reduced the expression of ion channels and ultimately alleviated neuropathic pain. We found that Sema3A could suppress the phosphorylation of eIF2 alpha by inhibiting the PI3K/AKT/mTOR pathway, thus affecting pain perception. These findings suggested that alterations in Sema3A expression and eIF2 alpha phosphorylation were involved in the development of neuropathic pain, providing potential new targets for clinical pain-relief drug development. Perspective: The expression of Sema3A in DRG neurons was decreased following peripheral nerve injury. Elevating Sema3A levels alleviated neuropathic pain by inhibiting the PI3K/Akt/mTOR pathway and eIF2 alpha phosphorylation, thus affecting ion channel expression in DRG of neuropathic pain model animals. This highlighted Sema3A as potential therapeutic targets for pain relief.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Targeting the PI3K/AKT/mTOR pathway in ovarian cancer
    Musa, Fernanda
    Schneider, Robert
    TRANSLATIONAL CANCER RESEARCH, 2015, 4 (01) : 97 - 106
  • [42] EFFECTS OF SULFORAPHANE ON APOPTOSIS AND PI3K/AKT/MTOR PHOSPHORYLATION PATHWAY IN COLORECTAL CANCER CELLS
    Jiang, Yuanxue
    Kuang, Meiling
    Deng, Caijiu
    ACTA MEDICA MEDITERRANEA, 2022, 38 (01): : 227 - 231
  • [43] PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway
    Bi, Yong-Yan
    Quan, Yong
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 1093 - 1098
  • [44] Astragalus Membranaceus Induced Myotube Hypertrophy via the PI3K/Akt/mTOR Pathway
    Yeh, Tzu-Shao
    Liu, Jen-Fang
    Hsu, Mei-Chich
    Yang, Suh-Chin
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (05): : 736 - 736
  • [45] IMMT promotes hepatocellular carcinoma formation via PI3K/AKT/mTOR pathway
    Wang, Jiabei
    Zhang, Yunguang
    Sun, Linmao
    Liu, Yao
    ONCOLOGIE, 2023, 25 (06) : 691 - 703
  • [46] Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K /Akt/mTOR pathway
    Liu, Jia-Zhou
    Hu, Yi-Lin
    Feng, Ying
    Guo, Yi-Bing
    Li, Yi-Fei
    Yang, Jun-Ling
    Mao, Qin-Sheng
    Xue, Wan-Jiang
    EXPERIMENTAL CELL RESEARCH, 2019, 385 (02)
  • [47] Dasatinib induces apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in bladder cancer cells
    Ho, Jin-Nyoung
    Byun, Seok-Soo
    Kim, Danhyo
    Ryu, Hoyoung
    Lee, Sangchul
    INVESTIGATIVE AND CLINICAL UROLOGY, 2024, 65 (06) : 593 - 602
  • [48] RETRACTED: Involvement of pro-inflammatory cytokines in diabetic neuropathic pain via central PI3K/Akt/mTOR signal pathway (Retracted Article)
    Jiang, Zongming
    Chen, Zhonghua
    Chen, Yonghao
    Jiao, Jing
    Wang, Zhifeng
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2021, 127 (06) : I - IX
  • [49] Imatinib inhibits oral squamous cell carcinoma by suppressing the PI3K/AKT/mTOR signaling pathway
    Ma, Lei
    Huang, Ke
    Zhang, Haibo
    Kim, Eungyung
    Kim, Hyeonjin
    Liu, Zhibin
    Kim, Chae Yeon
    Park, Kanghyun
    Raza, Muhammad Atif
    Kim, Kirim
    Yi, Junkoo
    Sung, Yonghun
    Ryoo, Zae Young
    Kim, Yong-Gun
    Kim, Myoung Ok
    JOURNAL OF CANCER, 2024, 15 (03): : 659 - 670
  • [50] Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes
    Wang, Xin-Yuan
    Gong, Lin-Jing
    Huang, Jun-Ming
    Jiang, Chang
    Yan, Zuo-Qin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2020, 880